

A Motivation-Hygiene Model of Open Source Software Code Contribution and Growth

Pratyush Nidhi Sharma
The University of Alabama
Email: pnsharma@ua.edu

Sherae L. Daniel

University of Cincinnati
Email: daniesr@ucmail.uc.edu

Tingting (Rachel) Chung
College of William & Mary

Email: rachel.chung@mason.wm.edu

Varun Grover
University of Arkansas

Email: vgrover@walton.uark.edu

Citation: Sharma, P.N., Daniel, S., Chung, T.R., and Grover, V. “A Motivation-Hygiene Model
of Open Source Software Code Contribution and Growth,” forthcoming in the Journal of the
Association for Information Systems, (2021).

Note: Copyright of this publication is owned by the Association for Information Systems and its
use for profit is not allowed.

1

A Motivation-Hygiene Model of Open Source Software Code Contribution and Growth

Abstract

The success of Open Source Software (OSS) projects depends on sustained contributions by

developers who often display a wide variety of contribution patterns. Project leaders and

stakeholders would strongly prefer developers to not only maintain – but preferably increase –

their contributions over time as they gain experience. Corporations increasingly complement

OSS developer motivations (such as fit in terms of shared values with the project community) by

paying them to sustain contributions. However, practitioners argue whether payment helps or

hurts projects because imbursement may dampen developer motivation in the long run. This may

make it difficult for project leaders to understand what to expect from developers over time.

Using Herzberg’s motivation-hygiene framework, we explore how developers’ perceptions of

value fit with the project and being paid interact to determine the level of code contribution and

its rate of change over time (i.e., growth). Using a survey of 564 developers across 431 projects

on GitHub, we build a three-level growth model explaining the code contribution and its growth

over a six-month period. We find that value fit with the project positively influences both the

level and growth of code contribution. However, there are notable differences among paid and

unpaid developers in the impact of value fit on their level and growth in code contributions over

time. The implications of our work will be of interest to researchers, practitioners, and

organizations investing in open source projects.

Keywords: Open source software, motivation, payment, value fit, code contribution, change

over time, multilevel growth analysis

2

 A Motivation-Hygiene Model of Open Source Software Code Contribution and Growth

 Introduction

Open Source Software (OSS) developers exhibit a wide variety of code contribution

patterns over time, creating challenges in anticipating the direction of project development

(Wang et al. 2018). To achieve sustained development, project leaders would strongly prefer that

developers not only maintain but increase their contributions over time (Ehls 2017; Lin et al.

2017). The person-organization fit literature suggests that value fit, which represents the extent to

which an individual’s personal values match the values espoused by an organization, is a strong

motivating factor for long-term contributions (Moynihan and Pandey, 2008; van Viaanen et al.

2007), especially in volunteer-driven organizations (Bahat 2020; Ertas 2019). OSS literature also

suggests that developers are driven to contribute based on the shared values espoused by a

project community (Schilling et al. 2012; Shah 2006; Stewart and Gosain 2006).

Although OSS development is based on certain core values (Raymond 2001), project

communities and individual developers differ widely in how strongly they embrace them. While

some projects welcome corporate sponsorship and choose permissive licenses (e.g., MIT

license), others shun sponsorship and choose restrictive licenses (e.g., GNU GPL) (Stewart et al.

2006; Ho and Rai 2017). Developers also vary in how strongly they believe in the OSS values of

altruistic software sharing, use and reciprocation (Maruping et al. 2019). Thus, it is not merely

how deeply developers hold these values but rather the extent to which they match with a

specific project community that will drive their contributions (Kristoff 1996).

Increasingly, many developers also rely on their OSS work to earn money to support their

livelihoods (Kantrowitz 2015; Schlueter 2013). Many firms (e.g., Microsoft, Google) now pay

select developers to support and sustain their OSS contributions (Germonprez et al. 2013; Riehle

3

et al. 2014). However, the introduction of payment is considered by many as being at odds with

the OSS philosophy and community values (Fitzgerald 2006; Gerlach 2016). On the one hand,

some argue that not paying developers for their labor is unethical and prevents many talented

developers from contributing (Dryden 2013; Werdmuller 2017). In the worst case, critical

software defects may remain hidden or unaddressed due to lack of paid developers, as evidenced

by the Heartbleed flaw in OpenSSL (Brodkin 2014; Marquess 2014).

On the other hand, others point to the uncertainty payment generates regarding the shared

values, effort expectations, and the future of the project development because paid and unpaid

developers often have different priorities (Berdou 2011). For example, David Hansson, the

creator of Ruby on Rails, argues that payment can demotivate OSS developers, rein in their

creativity, and disrupt the core community values in the long run (Hansson 2013). The Debian

community, which recently experienced extensive disruption in development, offers a cautionary

tale in this regard where many members argued that payment was against the values espoused by

the project (Gerlach et al. 2016). Based on this ongoing concern, our research question is: How

does the interaction between developers’ perceptions of value fit with an OSS project and

payment impact their code contribution levels and its rate of change over time (i.e., growth)?

We utilize Herzberg’s motivation-hygiene theory to illuminate the factors that lead to

developers’ code contribution patterns over time (Herzberg 1968; Herzberg et al. 1966).

Herzberg suggests that factors facilitating individuals’ psychological growth (i.e., motivation

factors) distinctly impact outcomes compared to those that affect their physiological needs (i.e.,

hygiene factors). Specifically, we posit that developers’ perceptions of value fit with the project

functions as a motivation factor, while payment serves as a hygiene factor. Even though value fit

is an important motivator in OSS development (Maruping et al. 2019), it can clash with the

4

influence of firms paying developers (Kreutzer and Jäger 2011). Research in psychology

suggests that external rewards, such as financial remuneration, may dampen developer

motivation (Deci et al. 1999; Kohn 1999). Yet, Roberts et al. (2006) found no evidence of

diminished motivation in the presence of financial motivators for OSS developers. By

considering the longitudinal impact of time, we seek to resolve the apparent discrepancy in these

results in the context of OSS development. In particular, exploring the tension between value fit

and payment can reveal the limits of their ability to elicit code contributions over the long-term.

 To do so, we build a three-level growth model within the hierarchical generalized linear

modeling (HGLM) framework on a sample of 564 developers working on the GitHub platform

across 431 projects. We test our hypotheses predicting code contribution level and its growth

over a six-month period as a function of developers’ perceptions of value fit with the project, and

how payment moderates this effect. We find that value fit has an overall positive influence on the

level of code contribution and its growth. However, important differences exist in the effect of

value fit between paid and unpaid developers on their level of code contribution and growth.

Specifically, value fit has a stronger effect on the level of code contribution for paid developers

compared to unpaid developers. In contrast, value fit has a stronger effect on the growth in code

contribution over time for unpaid developers compared to paid developers. We discuss the

implications of our work for the long-term outlook of developer contributions in OSS projects.

Background

OSS Developer Code Contribution Patterns

 Developer code contributions—in the form of new features, enhancements, and

bug fixes via code commits—constitute the core activity of OSS communities to ensure the long

term viability of the software product (Crowston et al. 2012). However, team stability is difficult

5

to achieve in OSS projects because developers display a wide variety of code contribution

patterns over time (Wang et al. 2018). Many volunteer developers make a single contribution

without ever making another one (Lee 2018), while others participate infrequently over the long

term (Barcomb et al. 2018). Only a limited set of developers make sustained contributions to a

particular project (Fang and Neufeld 2009; Pinto et al. 2016; Qureshi and Fang 2010).

Research has documented the severe negative effects of turnover among software

developers in general, and paid OSS developers in particular on project development (e.g.,

Foucault et al. 2015; Lin et al. 2017). The effect of lack of long-term developer contributions can

be especially severe for OSS projects due to the absence of general training or formal onboarding

procedures to bring new developers up to speed (Robles and Gonzalez-Barahona 2003). Both

paid and volunteer developers face social and technical contribution barriers in acclimatizing to

the complex project environment and must invest significant effort and time before being

allowed to join the “core” group, making team regeneration very challenging (Steinmacher et al.

2015; Von Krogh et al. 2003). Not surprisingly, understanding factors that influence OSS code

contribution patterns has attracted significant research attention (Von Krogh et al. 2012).

Motivation-Hygiene Theory

Herzberg’s motivation-hygiene theory addresses how an organization or collective can

effectively motivate employees or members to be productive. It proposes that human beings

experience two fundamental drives: to attain maximum psychological growth and to avoid pain.

Herzberg labeled these two distinct sets of factors motivation and hygiene (Herzberg 1968;

Herzberg et al. 1966). He argued that psychological growth factors - such as the inherent purpose

of work gained by collaborating with others who hold similar values - serve as motivators; while

hygiene factors, such as salary, do not motivate, but instead act as de-motivators when perceived

6

negatively (Katt and Condly 2009). The motivation factors tap into relational and emotional

issues, while the hygiene factors align with economic and utilization needs.

Herzberg developed the idea of two separate factors based on his work in the health and

epidemiology fields. When he asked employees about the best aspects of their jobs, they

mentioned interesting work and their interrelationships with peers who shared their values. He

termed these factors “motivators” because they are essential for intrinsically motivating

individuals (Deci et al. 1999). On the other hand, when asked about the worst aspects of their

jobs they discussed factors like pay, which he found were related to employees’ dissatisfaction,

but not their satisfaction (Herzberg et al. 1966; Sachau 2007). Herzberg borrowed the term

“hygiene” to describe these factors because good hygiene prevents illness, but it does not make

one healthy. Herzberg’s hygiene factors help meet the basic needs to sustain decent livelihoods,

and influence job dissatisfaction, but on the contrary, have minimal impact on satisfaction.

Payment for work, for instance, holds more potency as a job dissatisfier than as a job satisfier,

and is a necessary but not sufficient condition for satisfaction (Sachau 2007). Individuals driven

by hygiene factors may not necessarily find pleasure in doing the task (such as writing open

source code), but the financial remuneration keeps them from getting frustrated by helping

support their livelihoods. This occurs because the opposite of satisfaction is not dissatisfaction,

but “no satisfaction.” That is, satisfaction and dissatisfaction do not represent opposite ends of

the same spectrum, rather they represent separate continuums. Employees who find value in their

work may find their motivation frustrated by the absence of hygiene factors (e.g., payment).

Furthermore, employees who get their financial needs met can still lack motivation because their

jobs do not offer any value. Accordingly, Herzberg suggests providing motivation factors and

attending to hygiene factors at the same time in order to maintain a motivated workforce – but

7

keeping their administration separate (Herzberg 1968; Sachau 2007).

Longitudinally, the theory holds that motivation and hygiene factors have distinct impacts

on satisfaction versus dissatisfaction (or frustration) over the short and long-terms. Motivation

factors facilitate an individual’s psychological growth and lead to long-term satisfaction

(Herzberg 1968; Sachau 2007). On the contrary, hygiene factors typically yield short-term or

temporary “highs” when administered but lead to immediate frustration when withheld causing

the individual to likely stop or ignore work (Herzberg 1965; Herzberg 1968). This is supported

by research that shows that wealth and payment do not lead to long-term satisfaction but can

prevent immediate frustration (Sachau 2007). For example, in a study across 40 countries,

Inglehart (1997) found that as long as the basic needs of life are met, wealth (or income) does not

lead to long-term satisfaction. Large meta-analyses of studies also consistently show that

payment for work is unrelated to long-term satisfaction (Haring et al. 1984). Even windfalls in

cash, such as lottery, do not have long-term positive impacts (Brickman et al. 1978). Thus,

hygiene factors are most effective at preventing immediate suffering rather than bringing long-

term happiness or satisfaction (Sachau 2007). Instead, motivation factors are considered more

effective in driving the individual to superior performance and effort over time. Indeed, Herzberg

(1968, p. 62) notes, “The very nature of motivators, as opposed to hygiene factors, is that they

have a much longer-term effect on employees' attitudes”. Next, we discuss the two main

motivations that underlie Herzberg’s theory in the context of OSS development.

Motivation Factor: Value Fit

The desire to be with similar others is innate in human beings and motivates them to seek

situations where this need can be met (Schneider 1987). We posit that value fit, which is the

condition where OSS developers’ drive to find meaning in their work flourish in a given project

8

while collaborating with others with shared values, acts as a motivation factor (Kristof 1996;

Schilling et al. 2012). Value fit is most frequently operationalized as the congruence between

organizational and individual values, norms, and beliefs (Kristof 1996; Moynihan and Pandey,

2008; van Viaanen et al. 2007). Personal values, norms, and beliefs are enduring, deeply

embedded motivational resources that guide people in associating with others like themselves

and are separate from their day-to-day needs (Schwartz 1992). Recent work on social networks

and online collaboration shows that people are motivated to associate with similar others who

reaffirm, rather than challenge, their values and beliefs (Boutyline and Willer 2017). Indeed, the

desire to “fit in” and partake in the values of the hacker culture (e.g., freedom of software sharing

and use, reciprocation) was the main reason behind the open source movement (Raymond 2001).

Working, interacting, and most importantly, being accepted by reciprocating others with similar

values, and thus successfully fitting in the culture, gives OSS developers a sense of purpose and

leads to the creation of strong in-group identities (Lakhani and Wolf 2005).

The major mantras in OSS practice have been valuing knowledge, code sharing and use,

community governance, and volunteer work – regardless of the financial incentives (Ke and

Zhang 2009; O’Mahony and Ferraro 2007; Stewart and Gosain 2006). In addition, projects differ

in terms of community norms that reflect ways of practicing software development around issues

related to reciprocation and offering named credit to deserving developers to value their work

(Stewart and Gosain 2006; Maruping et al. 2019). Similarly, community norms related to project

forking are an important component of value fit between a developer and project community.1

While some developers and communities consider forking a cardinal sin because of its negative

impact on the project, others developers, including Brian Behlendorf, the co-founder of Apache

1 Project forking happens when a project community and its resources are split into two or more streams for
independent development.

9

Software Foundation, view project forking as a valid response against governance disagreements

to create new communities with shared values and sustainable development (Gamalielsson and

Lundell 2014). For example, LibreOffice is a fork of the OpenOffice project created by members

who hold more egalitarian values. Thus, the match between a developer and a project community

regarding named credit, forking, reciprocation, and beliefs regarding OSS practice positively

influences continued participation (Shah 2006; Stewart and Gosain 2006).

Individual projects also provide signals to potential developers about their community

values. Specifically, license choice is an important means by which a project communicates its

values regarding code sharing and profit making to developers (Spaeth et al. 2014; Stewart and

Gosain 2006). For example, the GNU “copyleft” license embodies the political value and belief

system espoused by its progenitor, Richard Stallman (Brock 2013). Indeed, Stallman writes:2

“Every decision a person makes stems from the person's values and goals. People can
have many different goals and values…When the goal is a matter of principle, we call
that idealism. My work on free software is motivated by an idealistic goal: spreading
freedom and cooperation. I want to encourage free software to spread, replacing
proprietary software that forbids cooperation, and thus make our society better. That's
the basic reason why the GNU General Public License is written the way it is—as a
copyleft.”

While GNU public license is considered restrictive (Stewart et al. 2006), OSS projects can

choose a permissive and business-friendly license that better reflects their values (Lerner and

Tirole 2005). When a project selects a license, it sends a signal about its community values with

which a developer may or may not agree. Similarly, a project’s choice of firm sponsorship sends

another signal to developers regarding their fit with the community. Stewart et al. (2006) found

that firm sponsorship discourages developers who value autonomy and disdain profit motives.

For example, while some developers are supportive of sponsorships, other prominent developers

2 https://www.gnu.org/philosophy/pragmatic.html

10

such as David Hansson consider it a “grave risk to the culture of open source”.3 Thus,

developers’ perceptions of fit regarding whether organizational sponsorship is acceptable and by

whom can determine their motivations to contribute (Spaeth et al. 2014). To the extent that

developers perceive a match with the project community along these characteristics, they will

feel a sense of belonging that drives positive outcomes (Kristof-Brown and Guay 2011). In

particular, value fit can be a crucial factor in determining developers’ retention in the project

when their learning and skill development eventually plateaus out (Zhou et al. 2016).4

Hygiene Factor – Payment in OSS

Consistent with Herzberg et al. (1966), we argue that payment for OSS work acts as a

hygiene factor. While in its traditional avatar OSS development mostly relied on unpaid

volunteers, a significant number of developers now receive payment and work full time on OSS

projects to support themselves financially (Germonprez et al. 2013; Riehle et al. 2014). For

example, Hertel et al. (2003) reported that 20% of developers on Linux were paid to contribute

on a regular basis and 23% more were paid to contribute occasionally. More recently, Corbet et

al. (2012) found that successful OSS projects received more than 75% of their code from

developers who received payment from a company.5 In fact, commercial developers support

3 https://twitter.com/dhh/status/1131585498395242496
4 In contrast to value fit, which is “supplementary” in nature, two types of “complementary” person-organization fit
also exist that measure the extent to which individuals and organizations are able to provide what is missing in the
other (Kristoff-Brown et al. 2005). First, Need-Supply fit measures the match between an individual’s pragmatic
needs and an organization’s ability to satisfy them. OSS developers also contribute to projects to fulfil a variety of
personal needs (need for software, enhancing their careers, enjoyment, learning etc.) that are separate from their
value-based motivations (Shah 2006). Second, and reciprocally, Demand-Ability fit measures the match between an
organization’s demands and an individual’s ability to successfully meet them. OSS projects place specific demands
on developers in terms of their knowledge, skills and abilities when making technical contributions such as code
commits. We discuss the important role of these two complementary fit types as covariates in our model later.
5 Financial incentives given to OSS developers may take a variety of forms. In addition to salary, some developers
receive bounties, donations or grants (Krishnamurthy and Tripathi 2009). A few OSS communities fundraise in
order to pay select developers; for instance, members of the Debian community raised money to pay two release
managers (Gerlach et al. 2016). Companies also pay developers to contribute to OSS projects to build their technical
expertise, which can then be utilized in their business models. For example, RedHat and MySQL pay employees to
write code to gain expertise so that they can help in product maintenance, support installation. Other for-profit

11

embedded Linux more so than hobbyists (Henkel 2006). Increasingly, many volunteer OSS

developers are seeking payment for their work to support their livelihoods. For example, Isaac

Schlueter, the creator of the npm package manager for Javascript notes (Schlueter 2013):

“Life costs money. The de facto way to get that money is to have a job. Some
forego the corporate gig, in favor of being nomads and starving artists. They take on
minimal employment requirements, if any, and spend the rest of their time being
productive on open source. But it’s a rough way to live. Good luck sending a kid to
school that way, or even feeding one. If we are going to continue to get benefits from
Open Source Software, and especially if we are going to maximize those benefits further,
we have to figure out how to pay for it. Beyond enabling OSS developers to eat and live
indoors, payment ties our efforts to the “real world” of transactions, where people use
our software to do stuff. Otherwise, it’s all too easy to spiral off into ivory tower la la
land.”

In contrast to traditional paid software development work, and despite its benefits to OSS

developers, introducing financial incentives in OSS communities can be challenging due to its

potential to create complex feelings among OSS developers. Critics argue that paying OSS

developers damages their creativity, motivation, and “risks transporting a community of peers

into a transactional terminal. And that buyer-seller frame detracts from the magic that is peer-

collaborators. It also holds the threat of corrupting the community at large” (Hansson, 2013).

Paying developers also increases complexity associated with governance and collaboration

(Jensen and Scacchi 2005), and developers worry that firms who pay may take control over the

OSS project (Gerlach et al. 2016). Developers on the Debian project expressed negative emotion

because they felt payment went against the project’s espoused values, in addition to creating

inequity among developers (Gerlach et al. 2016). In spite of these issues, not receiving pay for

their work to support their livelihoods can frustrate OSS developers and affect their contributions

(Dryden 2013; Marquess 2014; Werdmuller 2017). Thus, payment can generate complicated

issues in the OSS context that may affect developers’ long-term attitudes in unpredictable ways.

companies sell applications that they build on top of OSS products.

12

The Role of Time

Time plays a central role in the motivation-hygiene theory. Herzberg suggests that

motivation factors drive long-term impacts, while hygiene factors have short-term or temporary

impacts (Herzberg 1968; Herzberg et al. 1966; Sachau 2007). The OSS literature also suggests

time as the key factor in the relationship between developer attitudes and behaviors. Developers

initially face significant social and technical barriers to experiencing the benefits of value fit and

contributing to OSS projects (Steinmacher et al. 2015). Because OSS projects often do not offer

formal onboarding processes or training, a developer interested in joining can initially learn

about their possibility of fitting in by reading project-related documentation. Projects typically

maintain forum posts, licenses, sponsorship information, web pages, code documentation, or

FAQs that provide an immediate, yet somewhat limited insight into their potential value fit.

Over time, the experiences interacting with other developers reinforce whether or not a

developer fits with the project community values (Schneider 1987). They can glean signals

regarding whether the fit exists from their social interactions with other developers, the type of

contributions that the community prizes, and the direction of the project’s future development

(Ducheneaut 2005). Interaction with project members reduces developer’s uncertainty regarding

the contribution process, facilitates mutual expectations and workflow, and the achievement of

individual and group goals. Developers can learn and acquire the social and technical knowledge

necessary over time, thereby leveraging their value fit with the project further to contribute

successfully (Ducheneaut 2005; Qureshi and Fang 2010). They learn about the project “culture,”

including its values for meaningful social interaction and collaboration, before being accepted by

others. The degree to which they are successful in doing so represents the strength of their value

fit with the project (French et al. 1974). Thus, the benefits of value fit compound over time. In

13

contrast, a lack of value fit will lead to developer withdrawal (Schneider 1987). Overall, the

short-term impacts of motivating factors like value fit are different from the long-term impacts.

Interaction between Motivation and Hygiene Factors

What happens to developers’ attitudes about contributing over the long-term when they

experience both hygiene and motivation factors at the same time? The literature offers mixed

evidence. On the one hand, vast literature in psychology shows that extrinsic rewards, which are

analogous to Herzberg’s hygiene factors, weaken the positive impact of intrinsic motivations,

which are analogous to Herzberg’s motivation factors (Deci et al. 1999; Frey and Jegen 2001;

Kohn 1999; Sachau 2007; Wiersma 1992). When a developer receives compensation for

contributing code, the power structure within the OSS community changes (Jensen and Scacchi

2007). Instead of the developer holding autonomy in how and when to contribute, the power to

determine their actions moves to their employer or sponsor. The employers may mandate the

developer to perform tasks that may not hold their interest, thereby reducing their autonomy and

motivation (Atiq and Tripathi 2014). This is problematic because people have an inherent need

to feel in control of their actions and be autonomous (Ryan and Deci 2000).

On the other hand, a recent stream of OSS literature disputes the findings above and

suggests that receiving payment does not dampen developer motivation (Alexy and Leitner

2011). Researchers found that financial rewards held no negative impact on developer

motivation in the OSS context (Hars and Ou 2002; Lakhani and Wolf 2005; Roberts et al. 2006).

In fact, Lakhani and Wolf (2005) found that receiving financial rewards led developers to

contribute more time to OSS development. Similarly, Roberts et al. (2006) argued that

developers who receive payment have their motivations complemented because they find more

time to work on projects they are interested in. In contrast, Herzberg argues that hygiene factors

14

yield benefits only up to a certain extent, beyond which an organization must provide other

motivators to keep employees contributing (Sachau 2007). Given the uncertainty in how the

motivation and hygiene factors interact over time we develop our research hypotheses next.

Research Model and Hypotheses

Effect of Value Fit on Code Contribution

Interacting with similar others fulfils people’s fundamental need for validation of their

perspectives and finding meaning in their work (Byrne 1961). Because personal values and

beliefs often drive OSS developers (Bagozzi and Dholakia 2006; Gerlach et al. 2016; Ljungberg

2000), value fit with a project and its unique environment offers a way for them to meet their

personal need for consensual validation (Kristof-Brown et al. 2005). Given the wide variety of

developer and project value systems, it is the congruence between them that determines whether

developers will perceive value fit, experience opportunities for psychological growth, and

therefore continue to contribute to projects (Kristof 1996; Schneider 1987). Value fit with a

project reinforces and validates their values and beliefs, thereby increasing their commitment to

it (Edwards and Cable 2009; Moynihan and Pandey 2008; van Viaanen et al. 2007).

Fitting in also brings other advantages to developers that facilitate their code

contributions. Value fit with the project reduces their contribution cost by lowering the

interpersonal and communication barriers with others, clarifying expectations, streamlining the

effort, and informing them about how to make valuable contributions (Kristoff-Brown et al.

2005; Maruping et al. 2019). This helps meet their inherent need for competence, autonomy, and

relatedness (Deci et al. 1999). For instance, due to clearer expectations they feel more confident

to undertake tasks they know others will value. Due to low interpersonal and communication

barriers, they can better relate with their peers. Together these factors allow them to contribute

15

successfully to the project (Maruping et al. 2019). In the process, they may extract benefits

including opportunities to learn, earn rewards, and peer recognition (Atiq and Tripathi 2014).

When a person perceives value fit with the environment, they feel a sense of positive affect, such

as enhanced motivation to contribute (Kristoff-Brown et al. 2005). The degree to which the

developers perceive value fit should determine the extent of their motivation to contribute to the

project (Schilling et al. 2012; Schneider 1987). Therefore, as shown in Figure 1, we propose:

H1a: Value fit with the project positively affects developer code contribution.

By interacting with others and working in the project over time, developers encounter

more opportunities to assess their value fit with the community (Moreland 1999). Both the

project community and the developer exert reciprocal influence on one another and experience

important temporal changes in their interaction over time (Moreland and Levine 1982). When the

developer engages in an ongoing evaluation of the rewarding nature of their relationship with the

project, their motivation to contribute increases. Indeed, motivation factors (e.g., the value and

meaning of work) positively influence employees for a relatively long time (Sachau 2007).

As long as developers continue to perceive value fit with the project, they will continue

their association with it, resulting in improved outcomes over time (Kristof 1996; Schneider

1987). Developers’ increasing experience further improves performance as they explore, refine,

and replicate new routines or tasks for performance improvement, while getting better at

executing existing ones (Huckman et al. 2009). Their interpersonal interactions with other

developers help them learn how to successfully navigate the social collaboration process and

develop shared mental models over time (Moreland 1999). Through the process of cognitive

sense-making and uncertainty reduction over a period of time, developers improve at writing

code and expand their knowledge of project architecture, further reducing the technical barriers

16

and cognitive effort required to contribute (Von Krogh et al. 2003). As their peers come to

appreciate their contributions, developers may feel also psychologically rewarded by helping

others, thereby providing meaning to their work and further enhancing their motivation. Because

value fit lowers the contribution costs and increases the benefits accrued over time, developers

can make more frequent contributions with reduced effort (Kristof-Brown et al. 2005). Thus,

H1b: Value fit with the project positively affects the growth in developer code

contribution over time.

Interaction between Value Fit and Payment

OSS developers may be driven to contribute by value fit and payment simultaneously

(Roberts et al. 2006). Unlike value fit that drives individuals to action by motivating them over

the long-term, hygiene factors, such as payment, change individual’s immediate actions because

they push them not to lose those benefits (Herzberg et al. 1966). In this sense, developers

contribute to the project to avoid the discomfort of losing their remuneration. In the short-term,

payment keeps developers from getting immediately frustrated and dissatisfied (Sachau 2007).

Indeed, paid developers report that receiving payment drives them to spend more time working

on OSS than their peers (Germonprez et al. 2016; Lakhani and Wolf 2005). More importantly,

their work contracts may require them to work specific hours on OSS projects resulting in a

constant stream of contributions. For example, paid developers made higher than average code

contributions than unpaid volunteers did in the Apache project (Roberts et al. 2006).

When developers receive payment for their contributions and simultaneously perceive

value fit with the project community, they enjoy two complementary benefits. According to

Herzberg et al. (1966), payment ensures that they are not immediately frustrated or dissatisfied,

while the value fit makes them feel satisfied. Their need for consensual validation of

17

perspectives is met because of their value fit with the project, at the same time they get their

immediate physiological hygiene needs met by being paid (Sachau 2007). Organizational studies

show that workers are most effective when they are driven by both motivation and hygiene

factors simultaneously (Katt and Condly 2009). Thus, the net effect of payment in the short term

is to lift the amount of motivationally (value fit) driven contributions by paid developers higher

than the unpaid developers. Therefore, we propose that the level of code contribution is highest

when a developer perceives value fit with the project and receives payment at the same time.

H2a: The positive effect of value fit on code contribution is stronger for paid than unpaid

developers.

In contrast to our previous hypothesis, here we argue that the impact of value fit on the

growth in code contribution activity is stronger for unpaid compared to paid developers. That is,

we expect a stronger increase in code contributions over time for unpaid compared to paid

developers. Our logic rests on the asymmetry in the temporal effects of hygiene and motivating

factors in the long-term, and the differences in the cumulative benefits enjoyed by unpaid

developers versus the unique constraints and conflicts faced by paid developers that inhibit them

from fully leveraging the motivating effects of value fit over time. In essence, unpaid developers

rely on their autonomy to better leverage their value fit and improve their code contribution rates

over time than the paid developers.

Hygiene factors (payment) have short-term positive effects that decline with time, while

motivational factors (value fit) have long-term positive effects (Sachau 2007). Herzberg (1968)

found that payment produced positive feelings in a sample of accountants and engineers, but this

effect was short lived. He referred to this as a “kick in the pants” that propelled employees in the

short-term, but its effect diminished with time as they got accustomed to the remuneration,

18

requiring greater amounts to get the same level of output. In other words, the potency of payment

to reduce dissatisfaction weakens over time, thereby negatively impacting contribution levels.

Because hygiene needs escalate while motivators do not (Sachau 2007), Herzberg argued that

this can even impede the positive effects of motivators such as value fit in the long-term. Thus,

while payment pushes developers to increase their contribution levels initially, its positive effect

wears off over time (Sachau 2007).

In addition, contractual constraints also inhibit the self-actualization, psychological

growth, and the associated growth in code contribution for paid developers over time (Ryan and

Deci 2000). Due to their obligations, paid developers must prioritize their employer’s vision at

the cost of personal interests. They must manage intellectual property in a strategic way that

benefits their employer, such as by making sure that they do not include proprietary code in the

OSS application, which increases their burden (Henkel 2008). They also must carefully manage

their interactions within the OSS community, lest they provide unintended benefits to competing

companies, or go against project’s values (Germonprez et al. 2016). As opposed to unpaid

developers who can creatively contribute and are free from these burdens, paid developers may

struggle to find a good balance between corporate managerialism and voluntary motivation

(Kreutzer and Jäger 2011), and find it difficult to increase their rate of contribution despite their

increasing familiarity with the project and its code architecture.

Over time paid developers may also feel conflicted due to employer priorities that may

contradict their or project’s values (Berdou 2011), inhibiting their ability to fully leverage their

value fit. Reconciling the employer’s strategic vision with the values that the developer and the

project community share may require extra effort. Paid developers who share the project’s values

that all code should be open source may feel conflicted if their employer desires to keep some

19

code private and proprietary (Bergquist et al. 2009). For example, Henkel (2006) found that

firms operating in the embedded Linux market strategically limited their community

participation by ‘selectively revealing’ software code to protect their interests. This creates

hurdles and dampens the motivation for paid developers’ participation in the OSS community

which believes in reciprocation and sharing (Henkel 2008). Payment also moves the locus of

control away from developers to their employers. This reduction in autonomy means that paid

developers may not be able to choose the tasks they find personally fulfilling, challenging, and

enjoyable, limiting their self-actualization and satisfaction (Lakhani and Wolf 2005; Ryan and

Deci 2000). Instead, their employer can require them to work on mundane tasks, such as

maintenance, that may dampen their motivation to contribute (Berdou 2011). Indeed, as Hansson

(2013) notes, “There is something lost when you share because you must, rather than because

you can. It’s also what leads to consultant-ware (software that’s needlessly complex, and

requires you to buy consultants to figure it out).” Paid developers also have limited flexibility

and freedom to choose other developers they enjoy working with, inhibiting their ability to

nurture strong interpersonal bonds (Xu et al. 2009).

In contrast, unpaid developers enjoy a unique situation in that they have the freedom to

be creative and act without constraints imposed by an employer, allowing them to choose the

type of code contributions that best meet their psychological needs. Having sufficient leeway to

develop and implement their ideas, flexibility in choosing when and what to work on, and yet

possessing the ability to shape and influence the project can be very motivating for unpaid

volunteers (Kreutzer and Jäger 2011). Initial value fit assessment may require unpaid developers

to spend time and effort up front, possibly resulting in slower contribution rate to begin with.

However, over time as they gain technical expertise and overcome the contribution barrier, they

20

should see a faster increase in their code contribution levels. They have the freedom to choose

coding tasks that they personally feel facilitate learning and enhance personal growth without

worrying over imposed deadlines from their employer (Shah 2006). As they become deeply

involved in the project, over time they can realize even greater benefits related to the fun in

programming, learning, and reputation, while leveraging their gained skills and knowledge of the

project (Shah 2006). Additionally, unpaid developers are free to interact with other developers

they perceive as worthy of their attention, further strengthening the interpersonal bonds they

nurture over time. Indeed, Hahn et al. (2008) demonstrate that developers strongly prefer to work

with others with whom they share positive past experiences. Working with preferred

collaborators enhances their sense of community (Oh et al. 2016), self-actualization (Ryan and

Deci 2000), and psychological growth (Herzberg 1968), thereby allowing them to strongly

leverage the motivating effects of value fit for their contributions over time. Thus, we propose,

H2b: The positive effect of value fit on the growth in code contribution over time is

stronger for unpaid than paid developers.

Figure 1: Research Model

H1b

H2a

H1a

H2b

Value Fit

Payment

Code Contribution
Level

Growth in Code
Contribution Level
(change over time)

21

Methodology

Data and Sample

We use both survey and archival data to explore the interaction between developers’

perceptions of value fit and payment on their code contribution and its growth. The survey data

included developer demographics, measures for value fit, and whether they were paid to work on

the project. Archival data captured the pattern of their actual code contributions and other

characteristics, in addition to project characteristics. We conducted a survey of developers from

GitHub (www.github.com), which is one of the largest open-source platforms that provides OSS

developers with communication tools, version control processes, and repositories to manage their

code development. GitHub data have been widely used in OSS research (e.g., Jarczyk et al.

2018; Palyart et al. 2017). A random sample of 2,379 active developers, out of over 3 million

registered on GitHub, was drawn based on the selection criteria that required developers to have

made at least three code commits to a project with at least three other active developers. This was

done to ensure that the projects were active and that there were enough team members to render

the notion of value fit important. We approached developers through email for the survey and

offered a random drawing for prizes to incentivize participation. The prizes were one Linux

laptop and ten other respondents received Amazon gift cards worth $50.

A total of 768 participants responded to the survey (32.28% response rate), out of which

564 provided complete responses and were selected for the study. Respondent demographics are

presented in Table 1. These developers were associated with 431 unique projects, thereby

ensuring a broad range and diversity in project environments to be considered (Kristof-Brown et

al. 2005). A t-test indicated no significant differences between respondents and non-respondents

in their overall commits, recent commits, the number of developers who they followed, or the

22

number of projects to which they contributed, indicating that response bias was not a concern. To

eliminate common method bias we randomized the order of the survey questions and

triangulated the criterion data from GitHub archive to separate the measurement source of

predictors and outcomes (Podsakoff et al. 2003).

Table 1: Respondent Demographics
 N Percent

Gender Male 541 95.92
Female 22 4.07

Education

Some High School 17 3.01
High School Diploma 34 6.03
Post High School 10 1.77
College but No Degree 93 16.49
College Degree 208 36.88
Graduate Training 31 5.50
Master’s or Higher 171 30.32

Employment Status

Not Employed 45 7.98
Employed in Private/Public/NGO 388 68.79
Independent/Freelance 66 11.70
Business Founder 38 6.74
Self Employed 11 1.95
Other 16 2.84

Measures

Value fit with the focal project (predictor variable): Value Fit measures the match between a

developer and project in terms of values, beliefs, and norms (Cable and DeRue 2002). The OSS

specific content dimensions along which Value Fit is measured were culled from the existing

OSS literature (Stewart et al. 2006; Shah 2006; Stewart and Gosain 2006). We used direct

measures that involve asking people whether they believe a good fit exists along a specific

dimension, e.g., a project’s license choice (Cable and DeRue 2002). Compared to other (indirect)

measures, direct measures have been consistently shown to have the largest effect when the

construct is “perceived” value fit, i.e., when fit is conceptualized as the judgment that a person

23

fits well with the values in the organization (Kristof 1996). Furthermore, it has been shown that it

is not the actual rather the perceived value fit that best predicts individual outcomes, i.e., value fit

exists as long as it is perceived to exist (Cable and DeRue 2002; Lauver and Kristof-Brown

2001). Appendix-A presents the survey items used.

Payment in the focal project (predictor variable): We asked each survey respondent whether

they received any form of financial compensation (e.g., salary, contract) for their participation in

the focal project. The binary variable Paid captures this in our model.

Month (trajectory variable): We added the time-varying Month variable to assess the trajectory

of the developer contributions over time. This variable takes the value from one to six for each

successive month a developer’s contribution is tracked and helps tap the ongoing process of

change that affects the rate at which developers’ contributions vary over time.

Monthly focal project code commit activity (dependent variable): The dependent variable of

interest is the developers’ monthly post-survey code commit activity over a period of six months

in the focal project (Focal Project Commits).6 The six month observation period is in line with

other studies (Joyce and Kraut 2006; Solinger et al. 2013), and allows sufficient data points for a

growth-trajectory analysis.7 We tracked developer activity on GitHub for a six-month period

immediately after they responded to the survey. We chose to focus on code commit activity

because it is the most direct indicator of the software artifact evolving and is a necessary (but not

sufficient) condition for project success (Crowston et al. 2006).

Time-varying covariates (monthly non-focal project activity): Because OSS developers often

work simultaneously on multiple projects (Singh and Phelps 2013), their concurrent activities on

6 Focal project is the project they responded to the survey for. If a developer worked on multiple projects that met
our sample inclusion criteria, then they were asked about a single project chosen at random to mitigate self-selection
bias. Non-Focal project is any other project they were working on in that period but were not asked any specific
survey questions for.
7 However, we also present the results of a robustness check with an alternate time period later.

24

other (non-focal) projects may influence their contribution to the focal project by diverting their

attention away from it (Cummings and Haas 2012; O’Leary et al. 2011). Alternatively, working

on other projects may allow developers to tap into efficiencies by balancing the load and

applying skills learned from one project to another with greater efficiency (O’Leary et al. 2011).

To control for such effects, we tracked their monthly activity on non-focal projects and include

the following time-varying covariates in our model: Non-Focal Project Commits, Non-Focal

Project Pulls, and Non-Focal Project Issues.

Developer-level covariates: As noted earlier, Value Fit focuses on the compatibility derived

from the similarity in values, beliefs, and norms, and is thus “supplementary” in nature (Kristoff

1996). However, the person-organization fit literature notes that two other forms of fit, which are

“complementary” in nature, also exist when the person or environment provides (or

complements) what is missing in the other (Kristof-Brown and Guay 2011; Muchinsky and

Monahan 1987). First, “Need-Supply” fit is said to exist when an organization supplies a

person’s pragmatic needs that are separate from their need for consensual value-based validation

(Kristof-Brown et al. 2005). OSS developers also contribute to projects to satisfy various

practical needs such as need for software, enhancing their careers, finding enjoyment in

programming, feeling competent, peer-recognition, and learning (Shah 2006). Therefore, we

operationalize Need-Supply Fit as the match between developers’ pragmatic needs that they seek

to satisfy and the extent to which these are satisfied in a project. Second, “Demand-Ability” fit is

said to exist when a person is able to meet the professional demands of an organization (Kristof-

Brown et al. 2005). Following Cable and DeRue (2002) we operationalize Demand-Ability Fit as

the match between a developer’s knowledge, skills, and abilities and the demands of the project,

which indicates whether a developer has “what it takes” to meet the project’s technical demands

25

successfully. Including Need-Supply Fit and Demand-Ability Fit as developer-level controls in

our model allows us to tease out the effect of Value Fit and separate it from any effects purely

driven by developer abilities and need fulfilment. Appendix-A presents the survey items.

We control for differences in activity levels arising due to developer experience by

including the variable Tenure on GitHub, which is a count (in years) since the day they

registered on GitHub. We include the total Number of Past Commits in Focal Project

accumulated in the seven-month period prior to the start of our observation window, which

indicates developers’ sunk costs and their commitment, knowledge, and expertise with the focal

project. Core developers have higher sunk costs, as reflected in their past commits, as compared

to peripheral developers (Crowston et al. 2006; Setia et al. 2012). Finally, we control for the

developers’ Number of Project Associations and the number of Followers of a developer, which

is a measure of their popularity and recognition among peers and can be a motivating factor.

Project-level covariates: Newer projects may suffer from the liability of newness and struggle

to attract developer attention (Chengalur-Smith et al. 2010). We include the Project Age (in

years) to control for this effect. Projects with a larger developer base may also suffer from higher

developer dropout rates, thus we control for the number of Developers in Focal Project (Butler

2001). More active and successful projects may attract a greater number of commits. Thus, we

include Ln (Commits) in Focal Project, Releases, and Ln (Forks) in Focal Project (Crowston et

al. 2006; Daniel et al. 2013; Setia et al. 2012). Finally, popular projects may attract more

contributions, thus we control for Ln (Stars) in Focal Project that reflects the popularity rating of

the project. Table 2 presents the descriptive statistics of all the variables used in our study.

Table 2: Descriptive Statistics
VARIABLE N Mean SD Min Max Source Type

Developer Monthly Activity Variables (Level 1: Time Varying)
Focal Project Commits 3384 10.24 25.75 0 324 Archive Dependent

26

Month 3384 3.50 1.71 1 6 Archive Trajectory
Non-Focal Project Commits 3384 48.51 205.40 0 8989 Archive Control
Non-Focal Project Pull Requests 3384 3.36 8.16 0 106 Archive Control
Non-Focal Project Issues Reported 3384 2.65 7.05 0 100 Archive Control

Developer Level Variables (Level 2)
Tenure on GitHub (Years) 564 3.65 1.56 0.32 6.48 Archive Control
Number of Past Commits in Focal Project 564 332.35 749.28 3 9929 Archive Control
Number of Project Associations 564 34.15 33.99 0 175 Archive Control
Followers (Popularity) 564 64.55 147.68 0 1640 Archive Control
Paid in Focal Project (Binary) 564 0.35 0.48 0 1 Survey Predictor
Value Fit 564 0.02 0.98 -2.85 2.15 Survey Predictor
Need-Supply Fit 564 0 1 -3.64 2.14 Survey Control
Demand-Ability Fit 564 0.01 1 -4.12 2.07 Survey Control

Project Level Variables (Level 3)
Project Age (Years) 431 2.62 1.49 0.11 6.59 Archive Control
Ln(Commits) in Focal Project 431 7.62 1.69 3.04 13.06 Archive Control
Releases 431 70.99 344.50 0 6554 Archive Control
Contributors in Focal Project (Size) 431 140.94 385.75 3 4086 Archive Control
Ln(Stars) in Focal Project 431 6.88 1.37 1.39 11.17 Archive Control
Ln(Forks) in Focal Project 431 5.53 1.39 1.61 10.18 Archive Control

Construct Validity and Principal Component Analysis

The survey items presented in Appendix-A were adapted from Cable and DeRue’s (2002)

study for the OSS context. We extensively validated the items to ensure maximum content and

face validity, construct validity, and reliability of our main construct of interest (Value Fit),

which is distinct from the covariates Need-Supply Fit and Demand-Ability Fit (Bahat 2020). Two

rounds of Q-sorting were performed (Moore and Benbasat 1991; Petter et al. 2007). In the first

round, seventeen MBA students at a large public university in northeastern United States were

requested to evaluate and sort the items into three fit constructs. Results of this round

demonstrated initial construct validity with overall hit ratios of 86.39% across the three fit

constructs. We identified all ambiguous items and modified them accordingly. The refined

questionnaire was pilot-tested and refined in the second round based on feedback from fifteen

developers belonging to a local chapter of OSS developers to ensure content validity and domain

27

coverage. Finally, we solicited feedback from two academic OSS experts who evaluated the face

validity of constructs, phrasing and clarity of items, and adequacy of the domain coverage.

In order to provide further evidence for the construct validity, we conducted principal

component analysis (PCA) with Varimax rotation (Hair et al. 2009). Table 3 presents these

results. PCA allows us to (1) reduce the dimensionality of our 15 survey items and assess

construct validity (convergent and discriminant validity), and (2) calculate the component scores

to be used subsequently in the regression analysis (Hair et al. 2009). PCA is most appropriate

when used with formative constructs, such as value fit, to create component scores that are linear

combinations of the indicators or manifest variables (Darrow and Behrend 2017; Widaman

2007). The Kaiser-Meyer-Olkin measure of sampling adequacy was 0.88, above the commonly

recommended value of 0.60, and Bartlett’s test of sphericity was significant (χ2 (105) = 3225.21,

p < .05). A three-component solution was obtained (eigenvalues of 5.64, 1.71, and 1.44) with the

scree-plot showing leveling of eigenvalues beyond that. All the items loaded well onto their

respective corresponding components (total variance explained, 57.39%). The diagonal values in

the anti-image correlation matrix were over 0.50. The communalities were all above 0.30,

confirming that each item shared some common variance with other items, but more importantly,

no cross loading was above 0.25. These results provide strong evidence of convergent and

discriminant validity (Hair et al. 2009). We retained the component scores for further analysis.

Table 3: Principal Components Analysis
Construct Item Value Fit Need-Supply Fit Demand-Ability Fit

Value Fit

OSSPractice 0.77
Forking 0.73
Credit 0.71
License 0.71
Reciprocate 0.70
Sponsorship 0.51

Need-
Supply

Fit

Career 0.73
Financial 0.70
Learning 0.65

28

Recognition 0.58
Enjoy 0.54
Competent 0.53

Demand-
Ability

Fit

Knowledge 0.89
Skills 0.88
Abilities 0.83

Notes: Loadings smaller than 0.40 are not reported. Total Variance Explained: 57.39%.
Extraction Method: Principal Components Analysis. Rotation: Varimax with Kaiser Normalization.

Analytic approach

Recall that we tracked developers’ post-survey monthly contributions to focal projects

over a period of six months. This resulted in the data having a three-level structure: monthly

contributions – nested within individual developers – nested within projects.8 This nested

structure of our dataset means that assumptions of independence and homoscedasticity required

for linear regression and ANOVA are violated. Moreover, assumptions of compound symmetry

and sphericity that are necessary for repeated-measures ANOVA are often violated with

longitudinal data. To accommodate these assumption violations, we employed the individual

growth modeling approach with three hierarchical levels where we treat developers’ monthly

time-varying activities as level-1 variates, while developer and project level characteristics are

entered at levels 2 and 3, respectively (Raudenbush and Bryk 2002). Because the dependent

variable is count, we utilized a three-level Poisson growth model within the HGLM framework.

To obtain precise maximum-likelihood (ML) estimates we rely on the Adaptive Gauss-

Hermite Quadrature (AGQ) technique, which outperforms other estimation methods such as the

Penalized Quasi Likelihood for count outcomes (Pinheiro and Chao 2006; Raudenbush and Bryk

2002). In contrast to linear mixed models, the likelihood function does not have a closed form for

HGLMs, thus requiring numerical integration estimation of random effects to obtain ML

8 Each developer in our sample is associated with a single focal project, thus a cross-classified design is not
required.

29

estimates.9 The AGQ method provides unbiased estimates (with an arbitrary degree of accuracy)

but at the cost of increasing computational effort (Hartzel et al. 2001; Pinheiro and Chao 2006).

The degree of parameter accuracy and computational effort are inversely related to each other

and depend on the number of quadrature points (Q) chosen for estimation, with higher Q values

(~ 5-10) providing more accurate estimates but at the cost of high algorithm convergence

runtimes (Lesaffre and Spiessens 2001). We utilized AGQ estimation with Q = 15 points to

ensure robust estimates.

Panel A presents our fully specified research model in a three-level hierarchical format

for Focal Project Commits.10 All level-1 and level-2 variables (except the dummy, Paid) were

centered on the group mean, while all level-3 variables were centered on the grand mean to

reduce multicollinearity concerns (Raudenbush and Bryk 2002). Checks for multicollinearity

indicated no major concerns with the highest VIF statistic being 2.02.

Panel A: Hierarchical Model for Focal Commits
Level-1 (Developer Monthly Activity):

Log (E (Focal Project Commits|π)) = π0 + π1 (Month) + π2 (Non-Focal Commits) + π3 (Non-Focal
Pulls) + π4 (Non-Focal Issues) + e … (1)

Level-2 (Developer):
π0 = β00 + β01 (Paid) + β02 (Tenure) + β03 (Past Commits in Focal Project) + β04 (Number of Project

Associations) + β05 (Followers) + β06 (Value Fit) + β07 (Need-Supply Fit) + β08 (Demand-Ability Fit) + β09

(Paid x Value Fit) + r0 … (2)

π1 = β10 + β11 (Paid) + β12 (Tenure) + β13 (Past Commits in Focal Project) + β14 (Number of Project

Associations) + β15 (Followers) + β16 (Value Fit) + β17 (Need-Supply Fit) + β18 (Demand-Ability Fit) + β19

(Paid x Value Fit) + r1 … (3)

πq = βq0 for q = 2…4; … (4)

Level-3 (Project):
β00= γ000 + γ001 (Project Age) + γ002 (Ln (Commits) in Focal Project) + γ003 (Releases) + γ004

(Contributors in Focal Project) + γ005 (Ln (Stars) in Focal Project) + γ006 (Ln (Forks) in Focal Project) + u00

 … (5)
β10= γ100 + γ101 (Project Age) + γ102 (Ln (Commits) in Focal Project) + γ103 (Releases) + γ104

(Contributors in Focal Project) + γ105 (Ln (Stars) in Focal Project) + γ106 (Ln (Forks) in Focal Project)

9 Modeling random effects for developers also accounts for over-dispersion in the discrete repeated observations
modeled with the Poisson model (Hartzel, Agresti, and Caffo, 2001).
10 We also present the “mixed” version of the same model in Panel B (in Appendix B) for readers who prefer the
linearized format.

30

 … (6)

β0m = γ0m0 for m = 1…9 … (7)

β1n= γ1n0 for n = 1…9 … (8)

βp0= γp00 for n = 2…4 … (9)

Note: All Level-1 and Level-2 variables (except Paid) were centered on the group mean. All Level-3
variables were centered on the grand mean.

The model in Panel A allows us to analyze the effect of developer and project level

predictors on both the code contribution levels at a specific point in time and its rate of change

over time, i.e., growth (Willett 1997). Equation 1 represents developers’ unique growth

trajectories. Due to centering, the intercept for code contribution, π0, refers to developers’ code

contribution levels at t=3 months, halfway through the observation period; while the slope π1

refers to the (linear) growth in code contributions over the six-month observation period. The

individual size and growth parameters (π0 and π1) in equation 1 subsequently become dependent

variables that are predicted using developer-specific (the βs in equations 2-4) and project-specific

factors (the γs in equations 5-9). Thus, the level-2 and level-3 models predict individual growth

trajectories using developer and project characteristics respectively (Raudenbush and Bryk

2002). The most important feature of our model is that it captures the variability in developers’

code contributions levels and growth simultaneously. This distinction is important to consider

because individual developers differ markedly in their contribution patterns. While some

developers have high contribution levels at any given observation time point but slower growth

over time, others may have a lower contribution levels but exhibit faster growth over time as

they gain experience (Willett 1997).

Results

We began by specifying the null model and then incrementally estimating three

31

conditional models that improved model fit, with the fourth model representing the full model

(Panel A). These four models (Models 0-3) are summarized in Table 4 and described below.

Table 4: Results

Variable Type Fixed Effects Model 0 Null Model 1
Covariates

Model 2 Main
Effects

Model 3
Interaction

Mean Code
Commit Level Intercept (π0) 3.40*** (0.01) 3.21*** (0.02) 2.87*** (0.03) 3.28*** (0.03)

Mean Growth
Rate Month (π1) 0.15*** (0.00) 0.12*** (0.01) 0.33*** (0.01)

Time Varying Covariates

Level 1 Control
Non-Focal Commits (π2) -0.00*** (0.00) -0.00*** (0.00) -0.00*** (0.00)
Non-Focal Pulls (π3) 0.01*** (0.00) 0.01*** (0.00) 0.01*** (0.00)
Non-Focal Issues (π4) 0.00*** (0.00) 0.00*** (0.00) 0.00*** (0.00)

Code Commit Level Covariates (at t=3 months)

Developer Control
(Level 2)

Tenure (β02) 0.17*** (0.02) 0.11*** (0.02) 0.09*** (0.02)
Past Commits in Focal Project
(β03) 0.00*** (0.00) 0.00*** (0.00) 0.00*** (0.00)

Project Associations (β04) -0.00** (0.00) -0.00 (0.00) -0.00* (0.00)
Followers (β05) 0.00*** (0.00) 0.00 (0.01) 0.00 (0.00)
Need-Supply Fit (β07) 0.44*** (0.03) 0.36*** (0.03) 0.36*** (0.02)
Demand-Ability Fit (β08) 0.41*** (0.02) 0.42*** (0.02) 0.43*** (0.01)

Project Control
(Level 3)

Project Age (γ001) 0.05** (0.01) 0.06*** (0.02) 0.07*** (0.02)
LnCommits (γ002) 0.25*** (0.01) 0.21*** (0.01) 0.21*** (0.01)
Releases (γ003) -0.00 (0.00) -0.00** (0.00) -0.00* (0.00)
Contributors (Size) (γ004) -0.00*** (0.00) -0.08*** (0.00) -0.00*** (0.00)
LnStars (γ005) 0.16*** (0.02) 0.19*** (0.02) 0.21*** (0.02)
LnForks (γ006) -0.09*** (0.03) -0.11*** (0.03) -0.12** (0.03)

Growth Trajectory Covariates (Change Over Time)

Developer Control
(Level 2)

Tenure (β12) 0.08*** (0.00) 0.07*** (0.00) 0.06*** (0.00)
Past Commits in Focal Project
(β13)

 -0.00* (0.00) -0.00** (0.00) -0.00** (0.00)

Project Associations (β14) 0.00*** (0.00) 0.00*** (0.00) 0.00*** (0.00)
Followers (β15) -0.00*** (0.00) -0.00*** (0.00) -0.00*** (0.00)
Need-Supply Fit (β17) 0.01 (0.01) 0.01** (0.00) 0.02*** (0.00)
Demand-Ability Fit (β18) 0.00 (0.01) 0.00 (0.00) 0.00 (0.00)

Project Control
(Level 3)

Project Age (γ101) 0.02*** (0.00) 0.02** (0.00) 0.02*** (0.00)
LnCommits (γ102) 0.01** (0.00) 0.00 (0.00) 0.00 (0.00)
Releases (γ103) -0.00*** (0.00) -0.00*** (0.00) -0.00*** (0.00)
Contributors (Size) (γ104) -0.00*** (0.00) -0.00*** (0.00) -0.00*** (0.00)
LnStars (γ105) 0.01 (0.01) 0.01 (0.01) 0.00 (0.01)
LnForks (γ106) -0.01 (0.01) -0.01 (0.01) -0.00 (0.01)

Code Commit Level Predictors (at t=3 months)

32

Predictor of
Developer Code
Commit Level

Paid (β 01) 0.69*** (0.05) 0.76*** (0.08)
Value Fit (β06) 0.11*** (0.02) 0.08*** (0.01)
Paid X Value Fit (β09) 0.10** (0.04)

Growth Trajectory Predictors (Change Over Time)
Predictor of
Developer Growth
Trajectory

Paid (β11) 0.04*** (0.01) 0.04*** (0.01)
Value Fit (β16) 0.05*** (0.01) 0.11*** (0.00)
Paid X Value Fit (β19) -0.13*** (0.01)

Model Fit Statistics
Deviance (-2 log likelihood) 34638.01 27772.20 27802.60 27541.20
Estimated Parameters 3 33 37 39
AIC 34644.01 27838.20 27876.60 27619.27
BIC 34648.55 27888.13 27932.57 27678.27

Notes: * 0.10; ** 0.05; *** 0.01; Robust Standard Errors are in parentheses; Poisson Full Maximum
Likelihood via Adaptive Gaussian Quadrature (Q=15)

Model 0: The unconditional (or null) model has no predictors at any level and allows

partitioning the variance across the developer and project levels (Raudenbush and Bryk 2002). If

the variance attributable to the project level is not significant then the model can be simplified to

a two-level design. Results show that the variance due to developer characteristics was r0 = 4.38;

and the variance at the project level was u00 = 1.13, which was significantly different from zero

(χ2 = 559.02; df = 418; p < 0.01), thus necessitating a three-level design. The intra-class

coefficient (ICC), which measures the proportion of variance at the project level (level 3), shows

that a significant proportion of variance in monthly commit activity is due to project level

characteristics (1.13 / (4.38+1.16) = 20.39%). The first column in Table 4 presents the results of

the null model. The intercept is significant (π0 = 3.40, p < .01), and represents the natural log of

the expected (average) code commit activity across the population (29.96) at t=3 months.11

Model 1: We then estimated a covariates-only model. Here, the time-varying covariates

Month and monthly contributions to non-focal projects (Non-Focal Project Commits, Non-Focal

Project Pulls, and Non-Focal Project Issues) are entered at level-1 (equation (1) in Panel A).

11 HGLM uses the log-link function for level-1 Poisson models, i.e., the natural log of the event rate (Raudenbush
and Bryk, 2002).

33

These intra-individual factors capture the temporal dependence of developers’ code contributions

and growth over time (Willett 1997). The growth parameter, π1, is positive and significant (π1 =

0.15, p < .01), suggesting overall upward contribution trajectories. The model also includes other

developer-level covariates (Need-Supply Fit, Demand-Ability Fit, Tenure, Past Commits in Focal

Project, Number of Project Associations, and Followers), and project-level covariates (Project

Age, Ln (Commits) in Focal Project, Releases, Developers in Focal Project, Ln (Stars) in Focal

Project, and Ln (Forks) in Focal Project), which are entered at levels 2 and 3 respectively as

controls for the code commit levels (equations (2) and (5) in Panel A) and the growth in code

commits (equations (3) and (6) in Panel A).

Model 2: In this model we introduce the main effects of Value Fit and Paid to predict the

parameters for both code commit level (π0 in equations (2) and (5) in Panel A), and growth (π1 in

equations (3) and (6) in Panel A).

Model 3: Finally, we augment the main effects (model 2) by incorporating the interaction

between Value Fit and Paid to predict both code commit level (equations (2) and (5)) and growth

(equations (3) and (6)).

We compared these nested models for improvement in model fit. In HGLM, the deviance

difference between two models (one nested in the other) is chi-squared distributed, with a degree

of freedom equal to the difference in number of estimated parameters (Raudenbush and Bryk

2002). The deviance also allows the calculation of information theoretic model selection criteria

(e.g., AIC, BIC) that reward high fit but penalize unnecessary complexity. The deviance

difference test reports that model 3 is significantly better fit than the main-effects model 2 (Δχ2(2-

3) = 261.40, df = 2, p < .01) and the covariates-only model 1 (Δχ2(1-3) = 231.00, df = 6, p < .01).

Thus, incorporating the interaction effects significantly improved model fit, and helps explain

34

variance beyond models that include only the main effects and controls. Furthermore, both AIC

and BIC achieve minima for model 3, suggesting that it is the best model among the cohort.

Therefore, we focus on model 3 estimates to test our hypotheses (Table 4).

 The main effects of Value Fit are positive and statistically significant for both the code

contribution level at t=3 months (β06 = 0.08, p < 0.01) and growth in code contributions (β16 =

0.11, p < 0.01). These results provide strong evidence for H1a and H1b. In addition, although not

hypothesized, the main effect of Paid is positive and significant for both the code contribution

level at t=3 months (β01 = 0.76, p < 0.01) and growth (β11 = 0.04, p < 0.01). Taken together,

these results point to the overall positive effect of value fit (and payment) on not only

developers’ code contributions but also on the growth over time.

 To test for H2, we analyzed the interaction effect Paid x Value Fit which was significant and

positive for code contribution level at t=3 months (β09 = 0.10, p < 0.05). The positive sign on the

β09 interaction coefficient suggests that the effect of value fit on code contribution level is

stronger for paid compared to unpaid developers. In contrast, the effect of Paid x Value Fit was

significant but negative for the change over time, i.e., for the growth in code contribution (β19 = -

0.13, p < 0.01). The negative sign on β19 coefficient suggests that the effect of value fit on the

growth in code contributions over time is stronger for unpaid than paid developers. These results

provide evidence to support both H2a and H2b. Figure 2 illustrates the main and interaction

effects. As shown, the trajectories for developers reporting stronger value fit are higher than

developers with weaker value fit. This is apparent for both paid and unpaid developers; however,

paid developers have higher number of commits than unpaid developers (assuming the same

level of value fit) on average. The trajectories for both paid and unpaid developers have upward

slopes initially, however, paid developers reach an inflection point (between months four and

35

five) after which their growth plateaus and actually exhibits downward slope, while unpaid

developers see a much more robust and continuous growth throughout the six-month observation

window. These observations are in line with our hypotheses.

Figure 2. Effects of Value Fit and Payment over Time

Robustness Checks

To explore how generally applicable our findings are, we utilized an alternative

observation period to check the robustness of results. In the analyses thus far, we have utilized an

observation period of six months, which coincides with other studies and allows sufficient data

points (e.g., Joyce and Kraut 2006). On the other hand, significantly shorter time periods can

reduce the statistical power and variance available for a longitudinal growth analysis, and a

minimum of three observation periods are required (Raudenbush and Bryk 2002). A

counterargument to the six-month observation period could be that the developers’ situation may

evolve during this extended timeframe, thus affecting the trajectory. To check for the robustness

of our results, we selected an alternative (shorter) period of four months to run our model. These

36

results (Appendix-C) provide support for our results with one exception. While the main effect

of Value Fit was a significant predictor of the code contribution at t=3 months (six-month

model), it was not significant at t=2 months in the four-month model. This difference could be

attributed to the reduced power due to the shorter observation period.

Next, we note that HGLM provides two types of estimates: unit-specific (US) and

population-average (PA). PA estimates allow testing the differences in average response between

two groups with different risk factors. The PA coefficients have interpretation for the entire

population rather than any specific individual. All results presented thus far utilized the

population-average estimates with robust standard errors for two reasons: (1) PA responses are

more robust to misspecifications in the random effects, and (2) our goal is to study how the code

contribution and its growth differs between paid and unpaid developers (with high or low fit)

across all projects in the population. Thus, we analyzed the differences in contribution rates

associated with an increase in predictors, holding constant the other predictors, but averaged over

all project-level random effects. On the other hand, US estimates explicitly take into account any

subject-specific heterogeneity and represent an individual developer’s response to the risk factors

(e.g., being paid). We also present US estimates (Appendix-C) and note that they agree with the

population-average estimates. Finally, we also tested a quadratic growth model that takes into

account the acceleration in growth rate by including the quadratic term, Month2, in our model

(Appendix-C). These results are also consistent with our main results.

Discussion

 OSS development framework finds itself at the crossroads where motivations based on

shared values, norms, and beliefs (i.e., value fit) collide with the market dynamics and financial

incentives (Berdou 2011). This is reflected in more than a decade-long, continuing debate in the

37

Debian community regarding whether to allow, and if so, how to align payment with developers’

motivations.12, 13 Thus, how payment interacts with motivational factors that have been the

dominant drivers of OSS participation is a critical, yet unresolved question. Using the

motivation-hygiene framework, we posed the following question: How does the interaction

between developers’ perceptions of value fit with an OSS project and payment impact their code

contribution levels and its rate of change over time (i.e., growth)? Table 5 summarizes our

hypotheses and findings. We discuss the contributions to research and implications next.

Table 5: Summary of Findings
Hypothesis Supported

H1a: Value fit with the project positively affects developer code
contribution. Yes (β06 = .08; p < 0.01)
H1b: Value fit with the project positively affects the growth in developer
code contribution over time. Yes (β16 = .11; p < 0.01)
H2a: The positive effect of value fit on code contribution is stronger for
paid than unpaid developers. Yes (β09 = .10; p < 0.05)
H2b: The positive effect of value fit on the growth in code contribution
over time is stronger for unpaid than paid developers. Yes (β19 = -.13; p < 0.01)

Contributions to Research

Past OSS research has identified factors that motivate developers to contribute (e.g., Hars

and Ou 2002; Shah 2006; Von Krogh et al. 2012), noted that developers can be motivated by

several factors simultaneously (e.g., Hann et al. 2013; Lakhani and Wolf 2005; Roberts et al.

2006; Shah 2006), and identified the importance of long term contributions for project survival

(e.g., Chengalur-Smith et al. 2010; Fang and Neufeld 2009). Despite this strong foundation, the

OSS literature has yet to point out why developers show distinct code contribution patterns over

time (Lee 2018; Wang et al. 2018). Further, the focus on perceptive outcome measures such as

intentions to continue (e.g., Ghosh et al. 2013; Schilling et al. 2012; Ho and Rai 2017), or on

12 https://lwn.net/Articles/201488/
13 https://lwn.net/Articles/790954/

38

number of code commits (e.g., Maruping et al. 2019) ignores the growth in contributions, which

offers a more holistic assessment of how developers’ actual coding behaviors will evolve in the

future. By focusing both on the level of code contribution and growth in code contributions over

time, we contribute to the OSS motivation literature in several ways.

First, our finding that value fit increases the rate of code contribution over time is

consistent with Von Krogh et al.'s (2012) strong emphasis on understanding OSS development as

a social practice. They argue that a sense of community drives developers to contribute. Our

conceptualization of value fit, which aligns a developer with the project environment based on

shared values, as a strong antecedent of long-term contributions underscores the continued

importance of such motivational factors, even in the presence of financial incentives and

corporate involvement in the evolving OSS framework. Developers who perceive value fit

contribute more regardless of pay. Value fit matters – it amplifies contributions over time.

In contrast, differences in hygiene factors (paid or not) lead to fundamentally distinct

contribution patterns. Unpaid developers who perceive high value fit exhibit an increase in

contribution levels over time, while paid developers show higher levels of contributions initially

but decreasing growth in the long-term. A sharper focus on time explains when pay has a

positive or negative impact on code contribution. Highlighting the critical role played by time

also helps us synthesize prior findings that seemed to contradict each other. In particular, we help

reconcile the findings in OSS developer motivation literature with the prior findings in

psychology literature regarding the tension between intrinsic motivations, which are analogous to

Herzberg’s motivation factors, and extrinsic motivations, which are analogous to Herzberg’s

hygiene factors (Sachau 2007). Scholars in psychology have long suggested that extrinsic

rewards crowd out intrinsic rewards (Kohn 1999). The research on the negative effects of

39

external rewards began with Deci (1971), and since then numerous meta-analyses studies (e.g.,

Deci et al. 1999; Wiersma 1992) have provided strong empirical evidence that tangible financial

rewards (e.g., payment) for engaging, performing, or completing enjoyable and creative tasks

reduce interest in the activity (Sachau 2007). Despite these strong findings, recent research in the

OSS context has disputed this account (Alexy and Leitner 2011; Hars and Ou 2002; Lakhani and

Wolf 2005; Roberts et al. 2006). It is notable that this stream of OSS research did not consider

developers’ code contribution trajectories. Our results show that the two divergent narratives can

be reconciled when considering time as an important ingredient in understanding OSS

contributions, and in particular, by considering the distinction between the levels of code

contribution versus its growth over time, which represent two separate, yet equally important

aspects of code contribution trajectories (Raudenbush and Bryk 2002). We find that motivation

factors like value fit, and hygiene factors like payment, can complement each other in the short-

term resulting in higher code contribution levels, thus aligning our findings with the OSS stream.

However, receiving payment inhibits the positive effect of value fit on the growth in code

contribution, bringing our results more in line with the psychology literature, which argues that

payment can dampen motivations over time. Unpaid developers – who have freedom to choose

interesting tasks – showed stronger positive effect of value fit on the growth of code

contributions than paid developers who are obligated to work. This makes sense because hygiene

factors typically produce only short-term highs, but their motivating effects dissipate over the

long-term as the paid individual gets habituated to the current level of remuneration, which

becomes their minimum level expectation for the future (Brickman et al. 1978; Sachau 2007).

This phenomenon has been well documented in the literature on materialism where it has been

variously called “hedonic adaptation” (Frederick and Lowenstein 1999), “rising baselines”

40

(Kasser 2002), “hedonic treadmill” (Brickman and Campbell 1971) etc.

Second, the OSS developer motivation literature has focused on either the person or

project (environment) level factors separately but not on the match between them. By

conceptualizing both person and environment dimensions simultaneously in this context, we

accommodate developers’ perceptions of the match between their personal and project values

which has been shown to be a much stronger predictor of outcomes than either the individual or

environment characteristics alone (Kristof-Brown et al. 2005; Kristof 1996). Our main construct,

value fit, represents a match in the value, norms, and beliefs of the developer and the project

community. Because such values are durable and persist over time (Oreg and Nov 2008; Stewart

and Gosain 2006; van Vianen et al. 2007), value fit – once achieved – is likely to be relatively

stable. However, developers may evolve more readily on the complementary fit dimensions,

especially the Demand-Ability fit, which is expected to evolve as the developer’s experience,

skill, and life-situation changes over time, along with the project’s technical and effort demands

as it progresses. This represents a fertile opportunity for future investigation.

Third, OSS research has generally focused on identifying developer motivations (Hars

and Ou 2002), but not necessarily on how to manage their motivations to facilitate long-term

contribution. Our work takes the first step toward moving the attention to the “job enrichment”

perspective, which relates to how employers can create conditions that keep employees

motivated (Sachau 2007). In particular, our work opens up research opportunities in how to best

manage the precious resource of unpaid developers because volunteer management remains an

overlooked aspect not only in the management research in general (Ertas 2019), but in the OSS

domain in particular. This understanding is important for employers and project leaders to

strategically facilitate long-term OSS developer code contributions. Unpaid developers need to

41

feel that their work is being valued and respected. While unpaid developers who do not feel they

fit well with the project’s values have the option to simply leave, contractually bound paid

developers who do not fit may find their motivation wane, thereby adversely affecting their

performance. Conversely, developers who perceive a strong sense of value fit will be more

resilient, even when they are not paid for their contributions. How can OSS projects best

articulate their values and communicate them efficiently to attract skilled volunteer developers

who share the same value system? What kind of recruiting processes can organizations use to

leverage value fit when staffing paid developers to work on OSS projects? These are worthwhile

avenues of investigation. Further, we hypothesized that payment results in slower growth in code

contributions because its positive effects dissipate over time as developers get accustomed to the

level of pay, and paid developers feel inhibited by contractual constraints that reign in their

motivation. Short of providing a continual increase in pay that may not always be possible or

even desirable, how can this be avoided? The volunteer management literature has discussed the

role of paid staff as “quasi volunteers” in NGOs to motivate them better, i.e., employing them as

paid staff who also have some of the creative freedoms enjoyed by volunteers (Kreutzer and

Jäger 2011). Can allowing paid OSS developers more creative freedom (e.g., in choosing

interesting tasks, not just routine maintenance) and relieving some of the contractual constraints

help alleviate their decrease in growth in contributions (Figure 2)? This question opens up

research avenues regarding how to best align paid developers’ roles vis-à-vis unpaid developers.

Finally, research shows that when volunteers and paid staff work together in a volunteer-

involving organization (e.g., nonprofits), they often perceive the organization’s values through

distinct personal lenses leading to disagreements (Kreutzer and Jäger 2011). When unpaid

developers perform the same coding tasks as paid developers equally well, it is natural for paid

42

developers to feel threatened while unpaid developers to feel underappreciated. The Debian

project highlights that similar issues arise in the OSS context as well (Gerlach et al. 2016), and

that management processes need to be developed to mitigate such issues. NGOs often employ

volunteer resource managers who help oversee issues in maintaining relationship between paid

staff and volunteers (Ertas 2019). Can certain individuals act as liaison between volunteer and

paid OSS developers to manage expectations and interactions better? These are worthwhile

questions, and more research is needed to develop practices that best align OSS motivations and

financial interests.

Implications for Practice

OSS communities face increasing challenges in organizing developers influenced by

psychological and economic motivations (Gerlach 2016). As the variety of motivations increase,

managers may face difficulty in understanding what to expect from developers over time.

Corporate, government and educational sectors have begun to pay many OSS developers, and

managers and project leaders alike must understand how payment interacts with motivation

factors like value fit to influence sustained developer contributions. Given that code commits are

central to development, our results point to the limits in the efficacy of financial incentives in

eliciting code contributions in the long-term. Corporate sponsors should not rely on pay as the

exclusive mechanism and overlook the impact of motivators like value fit. It might be tempting

for managers and firms to focus solely on financial rewards and ignore the hard work that goes in

creating an interesting environment for work. Our results reveal the limits of such a strategy in

the OSS context, especially when the managerial interest is focused on the growth in

contributions over time. Indeed, the Linux foundation (2019) also notes that while payment can

get OSS developers in the door, retaining them requires strategies focused on creating an

43

environment conducive to their perceptions of value fit.

The OSS literature and practice have thus far treated developer motivations as a given.

The focus has been on identifying what motivates volunteer developers to contribute, with the

implicit assumption that self-motivated developers will contribute to OSS with minimal guidance

or encouragement in self-organizing teams (Crowston et al. 2007). However, due to the new

hybrid OSS work environment, we advocate the introduction of the “job enrichment” perspective

and the associated human resource practices, which can be particularly helpful in enhancing the

motivations of paid OSS developers by giving desired responsibilities and freedom to choose

interesting work and combat the limitations of hygiene factors (Sachau 2007). Hiring paid

developers to simply do mundane, uninteresting tasks while ignoring their motivational factors

may not be a worthwhile strategy in the long-term. The first step toward this goal is for the

managers and firms to recognize that contractual obligations can limit paid developer’s ability

for psychological growth and rein in their motivation. Furthermore, paid developers are

companies’ de facto brand ambassadors who can ensure continuity in project development. Yet,

they can be sensitive about balancing the corporate and community interests and tend to avoid

tasks that go against community values (Berdou 2011). Companies should invest in helping them

walk the precarious tightrope by reducing constraints that bind them and provide proper training.

Companies should also consider offering them more autonomy in selecting their tasks and

chances to learn new skills. We acknowledge that relinquishing control is easier said than done

when competing interests are at stake. OSS project leaders can potentially help increase paid

developer contribution by promoting relationships between these developers and the community.

In many ways, paid OSS developers are unique due to the hybrid nature of their work

environments and the peers they collaborate with. They may require specialized human resource-

44

based practices to motivate and help them manage relationships with volunteer developers.

From the point of view of managing the volunteer OSS workforce, senior members and

peers can be highly influential agents in helping create an environment conducive to developer

motivations and value fit (Moreland and Levine 1982). Value fit can be a crucial determinant of

developer retention, in particular when other factors such as learning and skill development

plateau over time (Zhou et al. 2016). Furthermore, prior research suggests that developers’

propensities to contribute long-term may differ depending on their personality types. For

example, Furnham et al. (1999) found that extraverts put more emphasis on motivational factors,

so long as hygiene factors are not problematic, when they choose a job, suggesting that

managerial strategies may be more effective in eliciting their long term contributions by helping

reinforce their sense of value fit with the community. On the other hand, introverts are driven

more by hygiene factors and may avoid contributing to projects without pay. It may be useful for

project managers to be mindful of differences in developers’ personality traits so that they are

managed according to the factors they value more.

Limitations

 We acknowledge some limitations in our study and offer avenues for future research. By

building a bridge between the motivation-hygiene and fit literatures our work opens new avenues

of investigation into how different types of fit may influence contributors in online peer

production environments. While we find that value fit is an important factor in determining long

term contributions, there other aspects of fit that are also worthy of exploration that were not in

the scope of our study. For example, the person-environment fit literature distinguishes between

person-job, person-supervisor, and person-group fit as distinct concepts to assess individual-level

outcomes such as attraction, joining, retention, and withdrawal (Kristoff-Brown et al. 2005). This

45

can be a fruitful avenue to explore because OSS projects follow different types of governance

models, which may make subtle differences in the different aspects of fit salient (O’Mahony and

Ferraro 2007). For example, while many OSS projects are supervised by a so-called benevolent

dictator (e.g., Linux), others follow a rotating dictatorship model (e.g., Perl), or even a

democratic voting-based approach as followed by Apache (Ljungberg 2000). Additionally, both

core and peripheral OSS developers perform a wide variety of tasks in projects requiring

different skills (Setia et al. 2012). Our model controls for the total number of past commits in the

focal project accumulated in the seven-month period prior to the start of our observation

window, which indicates not only a developer’s sunk cost but also their commitment,

knowledge, and expertise with the focal project. Core developers are likely to have much larger

sunk costs, as reflected in the number of past commits in the focal project, than peripheral

developers (Crowston et al. 2006; Setia et al. 2012). Yet, it remains unclear how core and

peripheral OSS developers’ perceptions of fit with the type of jobs they have, tasks they perform

in projects, their backgrounds, their supervisor(s), the project’s governance model, or fit with

their employers’ OSS policies impact outcomes. In a related vein, it would be worthwhile to

explore whether it is the fit with a specific project or group, or fit with the broader OSS

community that matters more when determining their continued participation to OSS, and how

do these forms of fit interact with each other.

The use of the dichotomous variable for payment does not allow us to assess the impact

of the magnitude or type of pay. Furthermore, it does not allow us to assess whether an employer

requests the stop and start of code contributions at various times. Several OSS developers who

helped us pilot test the survey items advised us during informal conversations that detailed

questions about payment (i.e., amount or source) may be considered too sensitive, and

46

respondents would be reluctant to provide details. We leave it to future research to explore

whether the type of employer (e.g., for-profit, non-profit etc.) or the amount of pay alters the

interaction between motivation and hygiene factors. Delving into funding sources such as

patreon and opencollective represents another area worthy of consideration. Finally, the effect of

other types of financial rewards such as bonuses, benefits, and promotion should be considered.

We focused on the quantity of code contribution as our dependent variable because code

commits are the primary indicator of the software artifact evolving and indicate a necessary (but

not sufficient) condition for project success (Crowston et al. 2006). In addition, code

contributions offer more opportunities for psychological fulfilment and lead to increased

responsibility and rank within the project compared to other tasks like documentation. Despite

the benefits of this measure, limitations remain that offer opportunities for future research. Code

quality is also an important factor to consider because it influences user interest and the ease with

which the application can be modified in the future (MacCormack et al. 2006). Furthermore,

OSS projects also depend on other types of important contributions including bug reports, feature

requests, documentation, and coordination among developers and stakeholders. Future research

should assess the generalizability of our results by assessing how motivation and hygiene factors

affect such contributions. It is also worth considering that after making code contributions

developers may transition into management roles and therefore make fewer commits (Dahlander

and O'Mahony 2011). The relationship between motivations and work may also change over the

course of a developer’s professional’s lives (DeLone and McLean 1992), suggesting that stage of

career may be another important boundary condition for the impact of motivation on outcomes.

In this vein, it might be useful to assess how Need-Supply and Demand-Ability fit evolve, as

developers gain in experience to improve their skills and abilities, and their needs change over

47

time. Another opportunity to extend our model rests in the addition of satisfaction and

dissatisfaction as mediators of the impact of value fit and pay on code contribution, which were

not included in this study. We expect value fit to positively impact satisfaction, and satisfaction

to lead to more contribution over time, while pay (or lack thereof) should lead to dissatisfaction

and lower code contribution over time.

Our sample was limited to a survey of developers from a single platform, GitHub.

Although GitHub is the largest OSS repository (Lindberg et al. 2016), it does not host the largest

OSS projects (e.g., Linux). Larger projects like Linux may be more likely to attract paid

developers, and as such replicating our study on large OSS projects presents an opportunity for

future research. In addition to the size, the provenance of OSS projects may also influence the

developers’ perceptions of fit and code contributions to the project (Ho and Rai 2017). Our

sample was composed predominantly of male developers. While most other researchers have

found OSS communities to be predominantly male (Bagozzi and Dholakia 2006; Choi and Pruett

2015), this brings up the question about the degree to which our model would fit a community

that has different gender distribution. Finally, because we restricted our attention to a six-month

period to assess developer trajectories, we are unable to assess how developer trajectories evolve

beyond this point. While we controlled for the acceleration or deceleration in developer

trajectories via the inclusion of the quadratic term (Appendix C), we leave the exact nature of the

trajectory shape for future research. Given the human time constraints, the growth of volunteer

code contributions shown in figure 2 is not sustainable forever. In addition, paid developers

might eventually settle down to linear, more horizontal trajectories after exhibiting the

downward slope for certain period of time, in which case the trajectory may not have an exact

curvilinear (or inverted-U) shape. Future research should explore how long this growth persists

48

until it begins to plateau by observing developers for a longer period of time.

Conclusion

OSS production is increasingly taking place in hybrid communities where both hygiene

and motivation factors influence developer contributions. The increasing prevalence of financial

incentives for OSS development raises important issues regarding developers’ contributions in

the short and long run. Utilizing Herzberg’s motivation-hygiene theory, this study untangles the

complex effects of motivation versus hygiene factors on developer contribution both cross-

sectionally and longitudinally. Our findings illustrate long term positive effects of value fit on

developer contribution to OSS projects and its growth, highlighting its importance even in the

presence of financial incentives and corporate engagement. We also document important

differences in the effect of value fit between paid and unpaid developers with regard to their

level of code contribution and change over time.

References

Alexy, O. and Leitner, M. 2011. "A fistful of dollars: Are financial rewards a suitable management
practice for distributed models of innovation?," European Management Review (8:3), pp. 165-
185.

Atiq, A. and Tripathi, A. 2014. "Monetary Rewards for Open Source Software Developers," Thirty Fifth
International Conference on Information Systems, Auckland, pp.

Bahat, E. 2020. Person–Organization Fit and Commitment to Volunteer Organizations. VOLUNTAS:
International Journal of Voluntary and Nonprofit Organizations, pp. 1-16.

Bagozzi, R. and Dholakia, U. 2006. "Open Source Software User Communities: A Study of Participation
in Linux User Groups," Management Science (52:7), pp. 1099-1115.

Barcomb, A., Kaufmann, A., Riehle, D., Stol, K.-J. and Fitzgerald, B. 2018. "Uncovering the Periphery:
A Qualitative Survey of Episodic Volunteering in Free/Libre and Open Source Software
Communities," IEEE Transactions on Software Engineering, pp. 1-18.

Berdou, E. 2011. Organization in Open Source Communities: At the Crossroads of the Gift and Market
Economies. Routledge.

Bergquist, M., Rolandsson, B. and Ljungberg, J. 2009. "Open source programmers strategies to cope with
ideological tensions," International Conference on Organizational Learning, Knowledge and
Capabilities, Amsterdam, the Netherlands.

Boutyline, A. and Willer, R.. 2017. “The social structure of political echo chambers: Variation in
ideological homophily in online networks,” Political Psychology (38:3), pp. 551-569.

Brickman, P., and Campbell, D.T. 1971. Hedonic relativism and planning the good society. In M.H.
Apley (Ed.), Adaptation-level theory: A symposium (pp. 287-301). New York: Academic Press.

Brickman, P., Coates, D., and Janoff-Bulman, R. 1978. “Lottery winners and accident victims: Is
happiness relative?” Journal of personality and social psychology, (36:8), pp. 917-927.

49

Brock, A. 2013. "Understanding Commercial Agreements with Open Source Companies," Brussels:
OpenForum Europe LTD for OpenForum Academy.

Brodkin, J. 2014. "Tech giants, chastened by Heartbleed, finally agree to fund OpenSSL," available at:
https://arstechnica.com/information-technology/2014/04/tech-giants-chastened-by-heartbleed-
finally-agree-to-fund-openssl/; accessed June 13th 2019.

Butler, B. 2001. "Membership Size, Communication Activity, and Sustainability: A Resource-Based
Model of Online Social Structures," Information Systems Research (12:4), pp. 346-362.

Byrne, D. 1961. "Interpersonal Attraction and Attitude Simlarity," Journal of Abnormal and Social
Psychology (62:3), pp. 713-715.

Cable, D.M. and DeRue, D.S. 2002. "The convergent and discriminant validity of subjective fit
perceptions," Journal of applied psychology (87:5), pp. 875.

Chengalur-Smith, I., Sidorova, A. and Daniel, S. 2010. "Sustainability of Free/Libre Open Source
Projects: A Longitudinal Study," Journal of the Association for Information Systems (11:11), pp.
657-683.

Choi, N. and Pruett, J.A. 2015. "The characteristics and motivations of library open source software
developers: An empirical study," Library & Information Science Research (37:2), pp. 109-117.

Corbet, J., Kroah-Hartman, G. and McPherson, A. 2012. "Linux kernel development. How Fast it is
Going, Who is Doing It, What They are Doing, and Who is Sponsoring It," The Linux
Foundation, 1-13.

Crowston, K., Howison, J. and Annabi, H. 2006. "Information systems success in free and open source
software development: theory and measures," Software Process: Improvement and Practice
(11:2), pp. 1223-1148.

Crowston, K., Wei, K., Howison, J. and Wiggins, A. 2012. "Free/Libre open-source software
development: What we know and what we do not know," ACM Computing Surveys (44:2), pp. 1-
35.

Crowston, K., Li, Q., Wei, K., Eseryel, U.Y. and Howison, J. 2007. " Self-organization of teams for
free/libre open source software development," Information and Software Technology (49:6), pp.
564-575.

Crowston, K., Wei, K., Li, Q., & Howison, J. 2006. “Core and periphery in free/libre and open source
software team communications,” In Proceedings of the 39th Annual Hawaii International
Conference on System Sciences, 6, IEEE.

Cummings, J.N. and Haas, M.R. 2012. "So many teams, so little time: Time allocation matters in
geographically dispersed teams," Journal of Organizational Behavior (33:3), pp. 316–341.

Dahlander, L. and O'Mahony, S. 2011. "Progressing to the Center: Coordinating Project Work,"
Organization Science (22:4), pp. 961-979.

Daniel, S., Agarwal, R. and Stewart, K.J. 2013. "The Effects of Diversity in Global, Distributed
Collectives: A Study of Open Source Project Success," Information Systems Research (24:2), pp.
312-333.

Darrow, J. B., and Behrend, T. S. 2017. Person-environment fit is a formative construct. Journal of
Vocational Behavior, 103, pp. 117-131.

Deci, E. L. 1971. “The effects of externally mediated rewards on intrinsic motivation,” Journal of
Personality and Social Psychology, 18, pp. 105-115.

Deci, E.L., Koestner, R. and Ryan, R.M. 1999. "A meta-analytic review of experiments examining the
effects of extrinsic rewards on intrinsic motivation," Psychological Bulletin, (125:6), pp. 627–
668.

Dryden, A. 2013. “The ethics of unpaid labor and the OSS community,” available at:
https://www.ashedryden.com/blog/the-ethics-of-unpaid-labor-and-the-oss-community

Ducheneaut, N. 2005. "Socialization in an Open Source Software Community: A Socio-Technical
Analysis," Computer Supported Cooperative Work (14:4), pp. 323-368.

Edwards, J. and Cable, D. 2009. "The Value of Value Congruence," Journal of Applied Psychology
(94:3), pp. 654-677.

50

Ehls, D. 2017. "Open Source Project Collapse – Sources and Patterns of Failure," Hawaii International
Conference on System Sciences Waikoloa, Hawaii, pp.

Ertas, N. 2019. Turnover intentions of volunteer resource managers: The roles of work motivations,
person–organization fit, and emotional labor. International Journal of Public Administration,
429, pp. 741-752.

Fang, Y. and Neufeld, D. 2009. "Understanding Sustained Participation in Open Source Software
Projects," Journal of Management Information Systems (25:4), pp. 9 - 50.

Fitzgerald, B. 2006. The transformation of open source software. MIS quarterly, pp. 587-598.
Foucault, M., Palyart, M., Blanc, X., Murphy, G.C. and Falleri, J.R. 2015. “Impact of developer turnover

on quality in open-source software,” In Proceedings of the 10th Joint Meeting on Foundations of
Software Engineering pp. 829-841.

Frederick, S., & Lowenstein, G. 1999. Hedonic Adaptation. In D. Kahneman, E. Diener, & N. Schwarz
(Eds.), Well-being: The foundations of hedonic psychology. (pp. 302-329). New York: Russell
Sage

Friedlander, F. and Walton, E. 1964. "Positive and negative motivations toward work," Administrative
Science Quarterly pp. 194-207.

French, J. R. P., Jr., Rodgers, W. L. and Cobb, S. 1974. “Adjustment as person-environment fit,” in
Coelho, G., Hamburg, D. and Adams, J. (Eds) Coping and Adaptation, Basic Books, New York,
pp. 316-333.

Frey, B. S., and Jegen, R. 2001. “Motivation crowding theory,” Journal of economic surveys, (15:5), pp.
589-611.

Furnham, A., Forde, L. and Ferrari, K. 1999. "Personality and work motivation," Personality and
individual differences (26:6), pp. 1035-1043.

Gamalielsson, J., and Lundell, B. 2014. “Sustainability of Open Source software communities beyond a
fork: How and why has the LibreOffice project evolved?,” Journal of Systems and Software, 89,
pp. 128-145.

Gerlach, J.H., Wu, C.-G., Cunningham, L.F. and Young, C.E. 2016. "An Exploratory Study of Conflict
over Paying Debian Developers," International Journal of Open Source Software and Processes
(7:3), pp. 20-38.

Germonprez, M., Allen, J.P., Warner, B., Hill, J. and McClements, G. 2013. "Open source communities
of competitors," interactions (20:6), pp. 54-59.

Germonprez, M., Kendall, J.E., Kendall, K.E., Mathiassen, L., Young, B. and Warner, B. 2016. "A theory
of responsive design: A field study of corporate engagement with open source communities,"
Information Systems Research (28:1), pp. 64-83.

Ghosh, K., Ramakrishnan, T. and Khuntia, J. 2013. "Open Source Software and Performance: A Fit
Perspective," Pacific Asia Conference on Information Systems pp. 116.

Hair, J. F., Black, W. C., Babin, B. J., and Anderson, R. E. 2009. Multivariate Data Analysis. 7th Edition.
Pearson Prentice Hall.

Hahn, J., Moon, J. Y., and Zhang, C. 2008. “Emergence of new project teams from open source software
developer networks: Impact of prior collaboration ties,” Information Systems Research, (19:3),
pp. 369-391.

Hansson, D.H. 2013. "The perils of mixing open source and money," available at:
https://dhh.dk/2013/the-perils-of-mixing-open-source-and-money.html

Haring, M. J., Stock, W. A., and Okun, M. A. 1984. “A research synthesis of gender and social class as
correlates of subjective well-being,” Human Relations, 37, pp. 645-657.

Hars, A. and Ou, S. 2002. "Working for Free? Motivations for Participating in Open Source Projects,"
International Journal of Electronic Commerce (6:3), pp. 25-39.

Hartzel, J., Agresti, A. and Caffo, B. 2001. "Multinomial logit random effects models," Statistical
Modelling (1:2), pp. 81-102.

Henkel, J. 2006. "Selective revealing in open innovation processes: The case of embedded Linux,"
Research policy (35:7), pp. 953-969.

51

Henkel, J. 2008. "Champions of revealing—the role of open source developers in commercial firms,"
Industrial and Corporate Change (18:3), pp. 435–471.

Hertel, G., Niedner, S. and Herrmann, S. 2003. "Motivation of software developers in Open Source
projects: an Internet-based survey of contributors to the Linux kernel," Research Policy (32:7),
pp. 1159-1177.

Herzberg, F. 1965. "The motivation to work among Finnish supervisors," Personnel Psychology (18:4),
pp. 393-402.

Herzberg, F. 1968. "One more time: How do you motivate employees?," Harvard Business Review, pp.
53-62.

Herzberg, F., Snyderman, B.B. and Mausner, B. 1966. "The Motivation to Work," Wiley.
Ho, S.Y. and Rai, A. 2017. "Continued Voluntary Participation Intention in Firm-Participating Open

Source Software Projects " Information Systems Research (28:3), pp. 603-625.
Huckman, R. S., Staats, B. R., and Upton, D. M. 2009. “Team familiarity, role experience, and

performance: Evidence from Indian software services,” Management science, (55:1), pp. 85-100.
Inglehart, R. (1997). Modernization and post modernization: Cultural, economic and political change in

societies. Princeton, NJ: Princeton University Press.
Jarczyk, O., Jaroszewicz, S., Wierzbicki, A., Pawlak, K. and Jankowski-Lorek, M. 2018. "Surgical teams

on GitHub: Modeling performance of GitHub project development processes," Information and
Software Technology pp.

Jensen, C. and Scacchi, W. 2005. "Collaboration, leadership, control, and conflict negotiation and the
netbeans. org open source software development community," 38th Annual Hawaii International
Conference In System Sciences, Big Island, HI, pp. 1-9.

Jensen, C. and Scacchi, W. 2007. "Role migration and advancement processes in ossd projects: A
comparative case study," 29th International Conference on ICSE IEEE pp.

Joyce, E. and Kraut, R.E. 2006. "Predicting continued participation in newsgroups," Wiley Online
Library.

Kantrowitz, N. 2015. Funding FOSS. Available at: https://coderanger.net/funding-foss/
Kasser, T. 2002. The high price of materialism. Cambridge, MA: MIT Press.
Katt, J.A. and Condly, S.J. 2009. "A Preliminary Study of Classroom Motivators and De-Motivators from

a Motivation-Hygiene Perspective," Communication Education (58:2), pp. 213-234.
Ke, W. and Zhang, P. 2009. "Motivations in open source software communities: The mediating role of

effort intensity and goal commitment," International Journal of Electronic Commerce (13:4), pp.
39-66.

Ke, W., & Zhang, P. 2010. “The effects of extrinsic motivations and satisfaction in open source software
development,” Journal of the Association for Information Systems, (11:12), pp. 784-808.

Kohn, A. 1999. "Punished by Rewards:: The Trouble with Gold Stars, Incentive Plans, A's, Praise, and
Other Bribes," Houghton Mifflin Harcourt.

Kreutzer, K., and Jäger, U. 2011. Volunteering versus managerialism: Conflict over organizational
identity in voluntary associations. Nonprofit and Voluntary Sector Quarterly, 404, pp. 634-661.

Krishnamurthy, S. and Tripathi, A.K. 2009. "Monetary donations to an open source software platform,"
Research Policy (38:2), pp. 404-414.

Kristof-Brown, A., Zimmerman, R. and Johnson, E. 2005. "Consequences of individuals' fit at work: A
meta-analysis of person-job, person-organization, person-group and person-supervisor fit,"
Personnel Psychology (58:2), pp. 281-342.

Kristof-Brown, A.L. and Guay, R.P. 2011. "Person-Environment Fit," Washington D.C.: American
Psychological Association.

Kristof, A.L. 1996. "Person organization fit: An integrative review of its conceptualizations,
measurement, and implications," Personnel Psychology (49:1), pp. 1-49.

Lakhani, K. and Wolf, R. 2005. "Why Hackers Do What They Do: Understanding Effort and Motivation
in Open Source Projects," Cambridge, Mass: MIT Press.

Lauver, K.J. and Kristof-Brown, A. 2001. "Distinguishing between employees' perceptions of person–job

52

and person–organization fit," Journal of vocational behavior (59:3), pp. 454-470.
Lee, A. 2018. "One-Time Contributors to FLOSS: Surveys and Data Analysis," ACM SIGSOFT Software

Engineering Notes (43:1), pp. 1-6.
Lee, G. and Cole, R. 2003. "From a Firm-Based to a Community-Based Model of Knowledge Creation:

The Case of the Linux Kernel Development," Organization Science (14:6), pp. 633-649.
Lerner, J. and Tirole, J. 2005. "The scope of open source licensing," Journal of Law, Economics, and

Organization (21:1), pp. 20-56.
Lesaffre, E. and Spiessens, B. 2001. "On the effect of the number of quadrature points in a logistic

random effects model: an example," Journal of the Royal Statistical Society: Series C (Applied
Statistics) (50:3), pp. 325-335.

Lewin, K. (1935). Dynamic theory of personality. New York: McGraw-Hill.
Lin, B., Robles, G. and Serebrenik, A. 2017. "Developer turnover in global, industrial Open Source

projects: Insights from applying survival analysis," Proceedings of the 12th International
Conference on Global Software Engineering pp. 66-75.

Lindberg, A., Berente, N., Gaskin, J. and Lyytinen, K. 2016. "Coordinating interdependencies in online
communities: A study of an open source software project," Information Systems Research, (27:4),
pp. 751-772

Linux Foundation. 2019. "Recruiting Open Source Developers, " available at:
https://www.linuxfoundation.org/resources/open-source-guides/recruiting-open-source-
developers/

Ljungberg, J. 2000. "Open source movements as a model for organizing," European Journal of
Information Systems (9:4), pp. 208-216.

MacCormack, A., Rusnak, J. and Baldwin, C.Y. 2006. "Exploring the Structure of Complex Software
Designs: An Empirical Study of Open Source and Proprietary Code," Management Science
(52:7), pp. 1015-1031.

Marquess, S. 2014. “Of Money, Responsibility, and Pride,” available at:
http://veridicalsystems.com/blog/of-money-responsibility-and-pride/

Maruping, L. M., Daniel, S. L., & Cataldo, M. 2019. “Developer centrality and the impact of value
congruence and incongruence on commitment and code contribution activity in open source
software communities,” MIS Quarterly, (43:3), pp. 951-976.

Moore, G.C. and Benbasat, I. 1991. "Development of an Instrument to Measure the Perceptions of
Adopting an Information Technology Innovation," Information Systems Research (2:3), pp. 192-
222.

Moreland, R. L. 1999. Transactive memory: Learning who knows what in work groups and organizations.
In L. L. Thompson, J. M. Levine, & D. M. Messick (Eds.), Shared cognition in organizations, pp.
3–31. Mahwah, NJ: Erlbaum.

Moreland, R.L. and Levine, J.M. 1982. "Socialization in small groups: Temporal changes in individual-
group relations," Advances in experimental social psychology (15: pp. 137-192.

Moynihan, D. P., and Pandey, S. K. 2008. The ties that bind: Social networks, person-organization value
fit, and turnover intention. Journal of public administration research and theory, 182, pp. 205-
227.

Muchinsky, P. M., and Monahan, C. J. 1987. “What is person–environment congruence? Supplementary
versus complementary models of fit,” Journal of Vocational Behavior, 31, pp. 268−277.

O'Leary, M.B., Mortensen, M. and Woolley, A.W. 2011. "Multiple Team Membership: A Theoretical
Model of its Effects on Productivity and Learning for Individuals and Teams," Academy of
Management Review (36:3), pp. 461-478.

O'Mahony, S. and Ferraro, F., 2007. “The emergence of governance in an open source community,”
Academy of Management Journal (50:5), pp.1079-1106.

Oh, W., Moon, J.Y., Hahn, J. and Kim, T. 2016. "Leader Influence on Sustained Participation in Online
Collaborative Work Communities: A Simulation-Based Approach," Information Systems
Research pp.

53

Palyart, M., Murphy, G.C. and Masrani, V. 2017. "A Study of Social Interactions in Open Source
Component Use," IEEE Transactions on Software Engineering pp.

Petter, S., Straub, D. and Rai, A. 2007. "Specifying formative constructs in information systems
research," Mis Quarterly pp. 623-656.

Pinheiro, J.C. and Chao, E.C. 2006. "Efficient Laplacian and adaptive Gaussian quadrature algorithms for
multilevel generalized linear mixed models," Journal of Computational and Graphical Statistics
(15:1), pp. 58-81.

Pinto, G., Steinmacher, I. and Aur, M. 2016. "More Common Than You Think: An In-Depth Study of
Casual Contributors," IEEE 23rd International Conference on Software Analysis, Evolution, and
Reengineering (SANER), Osaka, Japan, pp. 112-123.

Podsakoff, P.M., MacKenzie, S.B., Lee, J.-Y. and Podsakoff, N.P. 2003. "Common method biases in
behavioral research: a critical review of the literature and recommended remedies," Journal of
Applied Psychology (88:5), pp. 879-903.

Qureshi, I. and Fang, Y. 2010. "Socialization in Open Source Software Projects: A Growth Mixture
Modeling Approach," Organizational Research Methods (14:1), pp. 208-238.

Raudenbush, S.W. and Bryk, A.S. 2002. "Hierarchical linear models: Applications and data analysis
methods," Sage.

Raymond E. 2001. The cathedral and the Bazaar. Musings on Linux and Open Source by an Accidental
Revolutionary. O’Reilly and Associates, Sebastopolous, C.A., USA.

Riehle, D., Philipp Riemer, Kolassa, C. and Schmidt, M. 2014. "Paid vs. volunteer work in open source,"
47th Hawaii International Conference on System Sciences 3286-3295.

Robles, G., and Gonzalez-Barahona, J.M. 2003. "Contributor Turnover in Libre Software Projects," in:
IFIP International Federation for Information Processing: Open Source Systems, Springer,
Boston, pp 273-286.

Federation for Information Processing: Open Source Systems, Springer, Boston, 2006.
Roberts, J.A., Hann, I.-H. and Slaughter, S.A. 2006. "Understanding the Motivations, Participation, and

Performance of Open Source Software Developers: A Longitudinal Study of the Apache
Projects," Management Science (52:7), pp. 984-1000.

Ryan, R. M., and Deci, E. L. 2000. “Self-determination theory and the facilitation of intrinsic motivation,
social development, and well-being,” American psychologist, (55:1), pp. 68-78.

Sachau, D.A. 2007. "Resurrecting the motivation-hygiene theory: Herzberg and the positive psychology
movement," Human resource development review (6:4), pp. 377-393.

Schilling, A., Laumer, S. and Weitzel, T. 2012. "Who Will Remain? - An Evaluation of Actual Person-
Job and Person-Team Fit to Predict Developer Retention in FLOSS Projects," 45th Hawaii
International Conference on System Sciences, Maui, pp. 3446-3455.

Schlueter, I. 2013. “Money and Open Source,” Medium, available at: https://medium.com/open-source-
life/money-and-open-source-d44a1953749c

Schneider, B. 1987. “The people make the place,” Personnel psychology, (40:3), pp. 437-453.
Schwartz, S. 1992. Universals in the content and structure of values: Theoretical advances and empirical

tests in 20 countries. In M. P. Zanna (Ed.). Advances in experimental social psychology, 25, pp.
1–65. San Diego, CA: Academic Press

Setia, P., Rajagopalan, B., Sambamurthy, V. and Calantone, R. 2012. "How Peripheral Developers
Contribute to Open-Source Software Development," Information Systems Research (23:1), pp.
144-163.

Shah, S. 2006. "Motivation, Governance and the Viability of Hybrid Forms in Open Source Software
Development," Management Science (52:7), pp. 1000-1014.

Singh, P. and Phelps, C. 2013. "Networks, Social Influence, and the Choice Among Competing
Innovations: Insights from Open Source Software Licenses," Information Systems Research
(24:3), pp. 539-560.

Solinger, O.N., Olffen, W.v., Roe, R.A. and Hofmans, J. 2013. "On Becoming (Un) Committed: A
Taxonomy and Test of Newcomer Onboarding Scenarios," Organization Science (24:6), pp.

54

1640-1661.
Spaeth, S., von Krogh, G. and He, F. 2014. "Research Note—Perceived Firm Attributes and Intrinsic

Motivation in Sponsored Open Source Software Projects," Information Systems Research (26:1),
pp. 224-237.

Steinmacher, I., Conte, T., Gerosa, M.A. and Redmiles, D. 2015. "Social barriers faced by newcomers
placing their first contribution in open source software projects," Proceedings of the 18th ACM
conference on Computer Supported Cooperative Work & Social Computing, Vancouver, BC,
Canada, pp. 1379-1392.

Stewart, K. and Gosain, S. 2006. "The Impact of Ideology on Effectiveness in Open Source Software
Development Teams," Management Information Systems Quarterly (30:2), pp. 291-314.

Stewart, K. J., Ammeter, A. P., & Maruping, L. M. 2006. “Impacts of license choice and organizational
sponsorship on user interest and development activity in open source software projects,”
Information Systems Research, (17:2), pp. 126-144.

Van Vianen, A. E., Pater, I. E. D., and Dijk, F. V. 2007. Work value fit and turnover intention: same-
source or different-source fit. Journal of managerial psychology, 222, pp. 188-202.

Von Krogh, G., Haefliger, S., Spaeth, S. and Wallin, M.W. 2012. "Carrots and Rainbows: Motivation and
Social Practice in Open Source Software Development," MIS Quarterly (36:2), pp. 649-676.

Von Krogh, G., Spaeth, S. and Lakhani, K. 2003. "Community, joining, and specialization in open source
software innovation: a case study," Research Policy (32:7), pp. 1217-1241.

Wang, T., Zhang, Y., Yin, G., Yu, Y. and Wang, H. 2018. "Who Will Become a Long-Term
Contributor?: A Prediction Model based on the Early Phase Behaviors," Proceedings of the Tenth
Asia-Pacific Symposium on Internetware.

Werdmuller, B. 2017. "Why open source software isn’t as ethical as you think it is (And why it is),"
available at: https://words.werd.io/why-open-source-software-isnt-as-ethical-as-you-think-it-is-
2e34d85c3b16

Widaman, K.F. 2007. Common factors versus components: Principals and principles, errors and
misconceptions. Cudeck, R. and MacCallum, RC eds. Factor Analysis at 100: Historical
Developments and Future Direction, pp. 177-203.

Wiersma, U. J. 1992. The effects of extrinsic rewards in intrinsic motivation: A meta-analysis,” Journal
of Occupational & Organizational Psychology, (65:2), pp. 101-114.

Willett, J. B. 1997. "Measuring change: What individual growth modeling buys you," Change and
development: Issues of theory, method, and application, pp. 213-243.

Xiao, X., Lindberg, A., Hansen, S. and Lyytinen, K. 2018. "'Computing' Requirements for Open Source
Software: A Distributed Cognitive Approach," Journal of the Association for Information
Systems pp.

Xu, B., Jones, D.R. and Shao, B. 2009. "Volunteers’ involvement in online community based software
development," Information and Management (46:3), pp. 151-158.

Zhou, M., Mockus, A., Ma, X., Zhang, L. and Mei, H. 2016. "Inflow and Retention in OSS Communities
with Commercial Involvement: A Case Study of Three Hybrid Projects," ACM Transactions on
Software Engineering and Methodology (25:2), pp. 1-29.

55

Appendix – A
Survey Items

Construct Item Survey Question Source

Value Fit

Practice My personal beliefs about open source
practices match well with the project.

Measures the match between developer and
projects values, norms, and beliefs (Cable and
DeRue 2002).

OSS Specific Factors:
• License restrictiveness and market sponsorship
(Stewart et al. 2006)
• Forking norms and named credit policy norms
(Stewart and Gosain 2006)
• Reciprocation norms (Shah 2006).
• Beliefs regarding OSS practices (Stewart
2006)

Forking The project's norms about when and how
to fork are a good fit with my personal
norms.

Credit The project’s policy about giving due
credit to developers for their contributions
matches well with my personal norms.

License My personal values about open source
software usage and sharing match the
project’s license.

Reciprocate My personal norms about reciprocating
favors match well with the project's
norms.

Sponsorship My personal values about external
sponsorships for supporting open-source
projects match well with the external
sponsorship(s) that support this project.

Need-Supply Fit

Career There is a good fit between my need to
enhance my career opportunities and the
opportunities that the project provides.

Measures the match between the developer’s
needs and what the project supplies (Cable and
DeRue 2002).

OSS Specific Factors:
• Enjoyment/fun in programming and Peer
Recognition (Shah 2006).
• Feeling of competence (Hars and Ou 2002).
• Learning
• Personal/professional use of software
• Self-marketing (Career Enhancement).
• Financial Compensation (Hars and Ou 2002).

Financial There is a good match between my
expectation of financial compensation and
what contributing to this project provides
me.

Learning There is a good fit between the learning
opportunities the project provides me and
what I expect by contributing to it.

Recognition There is a good match between my desire
for recognition for a job well done and
what the project offers me.

Enjoy There is a good fit between the enjoyment
I seek while contributing to the project and
what it provides.

Competent There is a good match between my need to
feel competent and what participating in
the project offers me.

Software* There is a good fit between my need for
software for personal or professional use,
and what the project provides me.

Demand-Ability
Fit

Knowledge There is a good fit between my knowledge
and the demands of the project.

Measures the match between the project’s
demands and the abilities of the developer to
meet those demands (Cable and DeRue 2002).

OSS Specific Factors:
Typically measured along three dimensions
(KSA): Knowledge, Skills, and Abilities
(Caldwell & O’Reilly, 1990).

Skills My skills match well with the
requirements of the project.

Abilities My abilities are well matched with the
demands that the project places on me.

* Based on the rotated component matrix results in the PCA analysis, the Software item was dropped
from further consideration.

56

Appendix-B
Panel B: Mixed Model for Focal Commits

-------------------------------------INTERCEPTS-------------------------------------

Code Commit Level Intercept at t=3 Months
γ000

Growth Trajectory Intercept
+ γ100*Month

-------------------------------------COVARIATES-------------------------------------

Time-Varying Covariates and Errors
+ γ200*Non-Focal Commits + γ300*Non-Focal Pulls + γ400*Non-Focal Issues + r0 + r1*Month+ u00 + e

Code Commit Level Developer Covariates
+ γ020*Tenure + γ030*Past Commits in Focal Project + γ040*Number of Project Associations +
γ050*Followers + γ070*Need-Supply Fit + γ080*Demand-Ability Fit

Code Commit Level Project Covariates
+ γ001*Project Age + γ002*Ln (Commits) in Focal Project + γ003*Releases + γ004*Contributors in Focal
Project + γ005*Ln (Stars) in Focal Project + γ006*Ln (Forks) in Focal Project

Growth Trajectory Developer Covariates
+ γ120*Month*Tenure + γ130*Month*Past Commits in Focal Project + γ140*Month*Number of Project
Associations + γ150*Month*Followers + γ170*Month*Need-Supply Fit + γ180*Month*Demand-Ability
Fit

Growth Trajectory Project Covariates
+ γ101*Month*Project Age + γ102*Month*Ln (Commits) in Focal Project) + γ103*Month*Releases +
γ104*Month*Contributors in Focal Project + γ105*Month*Ln (Stars) in Focal Project + γ106*Month*Ln
(Forks) in Focal Project

-------------------------------------PREDICTORS-------------------------------------

Code Commit Level Predictors
+ γ010*Paid + γ060*Value Fit + γ090*Paid*Value Fit

Growth Trajectory Predictors
+ γ110*Month*Paid + γ160*Month* Value Fit + γ190*Month*Paid* Value Fit

57

Appendix-C
Robustness Checks

Variable Type Fixed Effects 4 Month Model Unit-specific Model Quadratic Model
Mean Code Commit Level Intercept (π0) 2.81*** (0.03) 0.11*** (0.01) 2.86*** (0.03)
Mean Growth Rate Month (π1) 0.11*** (0.01) -0.21*** (0.00) -0.16*** (0.02)
Acceleration Curve Month2 (π2) 0.04*** (0.00)

Time Varying Covariates

Level 1 Control
Non-Focal Commits (π2) -0.00*** (0.00) -0.00*** (0.00) -0.00*** (0.00)
Non-Focal Pulls (π3) 0.00 (0.00) 0.01*** (0.00) 0.01*** (0.00)
Non-Focal Issues (π4) 0.01*** (0.00) 0.00*** (0.00) 0.01*** (0.00)

Code Commit Level Covariates (at t=3 months)

Developer Control (Level
2)

Tenure (β02) 0.06*** (0.02) 0.08*** (0.01) 0.12*** (0.02)
Past Commits in Focal
Project (β03) 0.00*** (0.00) 0.00*** (0.00) 0.00*** (0.00)

Project Associations (β04) -0.00*** (0.00) -0.00 (0.00) -0.00 (0.00)
Followers (β05) 0.00*** (0.00) 0.00 (0.00) 0.00 (0.00)
Need-Supply Fit (β07) 0.36*** (0.03) 0.39*** (0.02) 0.36*** (0.02)
Demand-Ability Fit (β08) 0.46*** (0.02) 0.44*** (0.02) 0.42*** (0.02)

Project Control (Level 3)

Project Age (γ001) 0.06** (0.02) 0.07*** (0.00) 0.07** (0.02)
LnCommits (γ002) 0.19*** (0.02) 0.19*** (0.00) 0.21*** (0.01)
Releases (γ003) -0.00 (0.00) -0.00*** (0.00) -0.00** (0.00)
Contributors (Size) (γ004) -0.00*** (0.00) -0.00***(0.00) -0.00*** (0.00)
LnStars (γ005) 0.20*** (0.03) 0.17*** (0.01) 0.19*** (0.02)
LnForks (γ006) -0.12*** (0.04) -0.08*** (0.01) -0.11*** (0.03)

Growth Trajectory Covariates (Change Over Time)

Developer Control (Level
2)

Tenure (β12) 0.09*** (0.01) 0.06*** (0.00) 0.06*** (0.00)
Past Commits in Focal
Project (β13) -0.00** (0.00) -0.00** (0.00) -0.00** (0.00)

Project Associations (β14) 0.00*** (0.00) 0.00*** (0.00) 0.00*** (0.00)
Followers (β15) -0.00 (0.00) -0.00*** (0.00) -0.00*** (0.00)
Need-Supply Fit (β17) 0.06*** (0.01) 0.01 (0.01) 0.03*** (0.00)
Demand-Ability Fit (β18) -0.00 (0.01) -0.00 (0.01) -0.00 (0.01)

Project Control (Level 3)

Project Age (γ101) 0.02* (0.01) 0.02*** (0.00) 0.02*** (0.00)
LnCommits (γ102) 0.00 (0.01) 0.00 (0.00) 0.00 (0.00)
Releases (γ103) 0.00*** (0.00) -0.00*** (0.00) 0.00*** (0.00)
Contributors (Size) (γ104) 0.00 (0.00) -0.00*** (0.00) 0.00 (0.00)
LnStars (γ105) 0.00* (0.00) 0.00 (0.00) 0.00 (0.01)
LnForks (γ106) -0.00 (0.01) -0.00 (0.00) -0.01* (0.00)

Code Commit Level Predictors (at t=3 months)

Predictor of Developer
Code Commit Level

Paid (β 01) 0.67*** (0.05) 0.73*** (0.01) 0.69*** (0.05)
Value Fit (β06) 0.03 (0.02) 0.10*** (0.02) 0.09*** (0.02)
Paid X Value Fit (β09) 0.16** (0.07) 0.12*** (0.03) 0.06 (0.07)

Growth Trajectory Predictors (Change Over Time)

58

Predictor of Developer
Growth Trajectory

Paid (β11) 0.03** (0.02) 0.03*** (0.01) 0.03** (0.01)
Value Fit (β16) 0.27*** (0.01) 0.09*** (0.01) 0.10*** (0.00)
Paid X Value Fit (β19) -0.30*** (0.01) -0.12*** (0.02) -0.12*** (0.01)

Notes: 0.10; ** 0.05; *** 0.01; Robust Standard Errors are in parentheses.

Author Bios

Pratyush Nidhi Sharma is an Assistant Professor in the Department of Information Systems,
Statistics and Management Science, in the University of Alabama’s Culverhouse College of
Business. Pratyush holds a PhD in Information Systems from the University of Pittsburgh. His
research interests are interdisciplinary with a focus on the development, application, and the
impact of Information Systems. On the technology supply side, his work investigates how online
collaboration communities can better develop technological artifacts such as open-source
software. On the demand side, he investigates factors that affect the adoption of IT, and the
effect on user satisfaction and firm performance. In addition, he focuses on developing
predictive-analytic tools to better utilize the strengths of the prediction-oriented approach (vis-à-
vis the explanation-oriented approach) to create robust theory and policy. He has published in
distinguished management research journals including the Journal of the Association for
Information Systems, Journal of Retailing, Decision Sciences, AIS Transactions on Human-
Computer Interaction, Government Information Quarterly, and Journal of Information Systems.

Sherae L. Daniel is an Associate Professor of Operations, Business Analytics and Information
Systems in the Carl H. Lindner College of Business at the University of Cincinnati. She earned
her Ph.D. in Information Systems from the Robert H. Smith School of Business at the University
of Maryland. Sherae’s research seeks to reveal how to best manage collaboration challenges in
nontraditional work environments. In particular, she seeks to uncover the keys that will unlock
doors to future success for OSS collaborators. Sherae’s research has been published in premier
outlets such as Information Systems Research, MIS Quarterly, and the Journal of Association for
Information Systems. She is a member of the Association for Information Systems.

Varun Grover is the David Glass Endowed Chair and Distinguished Professor of IS at the
Walton School of Business, University of Arkansas. His current work focuses on the impacts of
digitalization on individuals and organizations. Dr. Grover has published extensively in the
information systems field, with over 250 publications in major refereed journals with ten recent
articles ranking him among the top four researchers globally. Dr. Grover has an h-index of 93
which is ranked in the top 5 in the field, and over 40,000 citations in Google Scholar. Thompson
Reuters recognized him as one of 100 Highly Cited Scholars globally in all Business disciplines.
He is has held or currently holds senior editorial positions in many top IS journals including
MISQ, JAIS, MISQE, ISR, etc. He is recipient of numerous awards from USC, Clemson,
University of Arkansas, AIS, Academy of Management, DSI, the OR Society, Anbar,
PriceWaterhouse, among others for his research and teaching. He is a Fellow of the Association
for Information Systems and was recently recognized with the LEO Award for exceptional
lifetime accomplishment in IS.

Dr. Tingting (Rachel) Chung is Clinical Associate Professor of Operations and Information
Systems. She holds a Ph.D. in Business Administration/Management Information Systems, a

59

Ph.D. in Psychology, and a Master of Science in Information Science, all from the University of
Pittsburgh. Dr. Chung's research has been published in Journal of Association for Information
Systems, Communications of the ACM, Journal of Managerial Psychology, International Journal
of Production Economics, Journal of Information & Knowledge Management, AIS Transactions
on HCI, and Omega. She has also given numerous presentations at international conferences,
including ICIS, ICAIF, AoM, INFORMS, and SIGCSE. Dr. Chung’s research has been
supported by ACFE Research Institute (ARI), Blockchain Lab of William & Mary, and National
Security Agency. Dr. Chung has completed a visiting scholarship at Vietnam National University
- International School and has received IBM Faculty Award in the Cognitive Computing
category, Community Partner of the Year Award, Houston Methodist Hospital, on behalf of
INFORMS, and Faculty Excellence Award from the Master of Science in Business Analytics
(MSBA) program at College of William & Mary.

